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XLR8 Program: Scope and Sequence 

 2 year 
program 

3 year 
program 

Unit 01: Comparing, counting and representing quantity 
Students study countable attributes of their immediate environment, including 
attributes of the group of students (e.g., more boys than girls, less students with blue 
eyes than brown eyes) in the classroom and attributes of the school (e.g., quantity of 
windows in a classroom, quantity of ceiling tiles, length of classroom in steps). This 
context is limited to those attributes which can be described and represented using 
whole numbers. 

1 1 

Unit 02: Additive change of quantities 
Students extend their investigations of numbers from features of their immediate 
environment, to features of larger populations in their state, country or world. This 
context is limited to those features which can be counted using whole numbers and 
which can be used in additive number stories (for which the total or one of the parts is 
unknown). 

1 1 

Unit 03: Multiplicative change of quantities 
Students explore multiplicative relationships and changes using real-world situations 
that involve discrete items. This context is limited to those features which can be 
counted using whole numbers, can be used in multiplicative number stories (for which 
the product or one of the factors is unknown), and for which divisions also result in 
whole numbers.  

1 1 

Unit 04: Investigating, measuring and changing shapes 
Students explore 3D objects, their 2D surfaces and the 1D attributes of point, line and 
angle. This context includes measurement of the attribute of turn (angle) and 
mathematical transformations of 2D shapes and 3D objects including reflection, rotation 
and translation of shapes and how these may be combined with tessellation to generate 
and describe designs.  

1 1 

Unit 05: Dealing with remainders 
Students extend their investigations of partitioning and quotitioning features of their 
immediate environment and features of larger populations in their state, country or 
world to include situations that result in a remainder. Students will explore partitioning 
whole items into fractions, quotitioning into smaller units, and sharing of remainders of 
collections. Continuous measures such as length provide useful contexts for partitioning 
and quotitioning.  

1 1 

Unit 06: Operations with fractions and decimals 
Students connect the common fraction representations of tenths, hundredths and 
thousandths to their decimal fraction representations in contexts common to students’ 
immediate environments including money, measurement and parts of discrete wholes. 
Students will develop strategies to calculate additive and multiplicative changes 
involving fractional amounts represented as both common fractions and decimals. 

1 2 

Unit 07: Percentages 
Students extend their representations of fractions to include percentage. Percentage is 
used to compare values multiplicatively and to describe quantity comparisons, 
recommended daily intake of nutrients, discounts, markups, tax and simple interest. 
Students will be encouraged to work flexibly between common fractions, decimal 
fractions and percentages.  

1 2 
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 2 year 
program 

3 year 
program 

Unit 08: Calculating coverage 
Students extend their investigations of attribute measurement from one-dimensional 
length measures to two-dimensional measures of coverage or area. This idea starts with 
coverage which can be counted using whole numbers before extending to fractional 
measures. Area measurement and calculation provides an opportunity for consolidation 
of multiplication and division with larger numbers, and consolidation of multiplication 
and division of fractional quantities expressed as common fractions, mixed numbers or 
decimal numbers.  

2 2 

Unit 09: Measuring and maintaining ratios of quantities 
Students develop their ability to measure duration, convert between units of measure 
and describe proportional relationships between quantities of discrete items or 
measurements using ratio notation. Students will also explore changing overall 
quantities while maintaining consistent proportions between the parts. 

2 2 

Unit 10: Summarising data with statistics 
Students develop their ability to gather, organise and represent data from primary and 
secondary sources. Ideas of sample, population and inference will be used to inform 
decision making from the gathered data. Students will also develop their ability to 
analyse measures of central tendency and variation within data sets and learn to 
represent and interpret these aspects on graphical representations (stem and leaf plots 
and box and whiskers graphs). Further analysis of the misrepresentation of data will 
conclude this unit’s development of ideas surrounding critical analysis and interpretation 
of data and statistics. 

2 2 

Unit 11: Describing location and movement 
Students develop their ability to describe location and movement along a 1D line and in 
2D space with respect to an origin and extending from internal to external frames of 
reference. Generating 2D representations of location and movement on scale maps and 
grids using alphanumeric coordinates and compass bearings and distance will be 
extended to include geometric location of points and collections of points on the 
Cartesian plane. Students will explore Pythagoras’ theorem to find diagonal distances 
travelled.  

2 3 

Unit 12: Enlarging maps and plans 
Students develop their ability to describe proportional relationships between quantities 
of measurements using ratio notation. Ratio will also be used to describe enlargement 
and reduction transformations to create similar shapes, scale maps and grids, 
representations of shapes and paths on the Cartesian plane, and plan drawings. 
Explorations can be extended to trigonometric ratios between similar figures and the 
application of scale factor to area of similar figures.  

2 3 

Unit 13: Modelling with linear relationships 
Students explore parallels between ratio and rate in the context of relationships 
between measured attributes.  These understandings will be extended to algebraic 
equations which can also be represented on the Cartesian plane to assist with 
visualisation of relationships and use of equations and algebraic calculations for finding 
gradient and distances between points on a line.  

2 3 

Unit 14: Volume of 3D objects 
Students explore relationships between measurements of solid objects that lead to 
calculations of formulae, relationships between solid volume and surface area and 
investigations of contexts that require calculation of solid volume of composite objects.  

2 3 

Unit 15: Extended probability 
Students extend upon their ability to determine theoretical probability and make 
inferences based upon likelihood of an event. Students will explore and compare 
theoretical and experimental probabilities, recognise when events are mutually 
inclusive, mutually exclusive or complementary and determine the probability of single-
step and multi-step events.  

2 3 
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Overview 

Context 
In this unit, students will connect the common fraction and decimal fraction representations of 
tenths, hundredths and thousandths. The cycles describe the mathematical concepts within contexts 
that are familiar to the students and include concepts of money, measurements and parts of discrete 
wholes. Students will develop strategies to calculate additive and multiplicative changes involving 
fractional amounts represented as both common fractions and decimals.   

Scope 
This unit applies the number-as-measure meaning of a cardinal number. Fractions describe parts of 
wholes or parts of units, and may be represented as common fractions or decimal fractions. 

Like whole numbers, parts of wholes that are alike can be counted and subject to additive change. 
For common fractions to be alike, they require like denominators. Similarly, in order to perform 
additive change or comparison operations with decimal fractions, like place values must be aligned.  

The meaning of multiplicative fraction and decimal operations can be difficult to navigate. Fraction 
and decimal multiplication involves finding how many or how much when the fractional amount is 
repeated or finding a fraction of an amount (which is essentially division by the reciprocal). 
Conversely, fraction and decimal division involves finding the how many shares of the fractional 
amount fit within the original quantity as repeated subtraction.  

Continuous attributes of an entity such as length, mass and capacity can be partitioned into 
standard metric units for counting. Each of these units can be further partitioned as a result of 
division. The parts of the unit can be represented using fraction notation. Standard metric units of 
measure use a common set of prefixes to nominate a multiplier for the base unit. This multiplier 
indicates how many of the standard unit are combined/partitioned into an alternative related unit. 
Using place value understanding, decimal fractions, and extended tens facts it is possible to convert 
between standard metric units of measure using understandings of fraction operations. 

The organisation of these and other related concepts is shown in  

Figure 1, in which the scope of concepts to be developed in this unit is highlighted in blue, concepts 
that may be connected to and reinforced are highlighted in green and number and algebra concepts 
and processes that are reinforced and applied within this area are highlighted in black.  

Assessment 
This unit provides a variety of items that may be considered as evidence of students’ demonstration 
of learning outcomes: 

• Diagnostic Worksheets: The diagnostic worksheet should be completed before starting to teach 
each RAMR cycle. This may show what students already understand. Not all objectives are 
represented on diagnostic worksheets. 

• Anecdotal Evidence: Some evidence of student understanding is best gathered through 
observation or questions. A checklist may be used to record these instances. 

• Summative Worksheet: The summative worksheet should be completed at the end of teaching 
the unit. This may be compared with student achievement on the diagnostic worksheets to 
determine student improvement in understanding. 

• Portfolio task: The portfolio task P06: Calculating Costs accompanying Unit 06, engages students 
with exploring fractions of discrete items and of collections generated when preparing for a BBQ. 
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Figure 1 Scope of this unit 
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Cycle Sequence 
In this unit, concepts identified in the preceding section are developed in the following suggested 
sequence: 

Cycle 1: Additive Operations with Fractions 

This cycle extends addition and subtraction concepts and processes explored with whole numbers to 
addition and subtraction of fractions. Additive operations with common fractions and mixed 
numbers rely on the use of equivalence to generate like denominators. This allows operations to be 
performed on the numerators as if they are whole numbers.   

Cycle 2: Multiplication of Fractions 

This cycle develops strategies for multiplication of fractions by connecting multiplication concepts 
and processes with fraction concepts. The most accessible meanings for multiplication of fractions 
are repeated addition and change. This section uses area and number line models to represent 
problems and assist thinking.  

Cycle 3: Division of Fractions 

This cycle connects division concepts and processes explored with whole numbers to fraction 
concepts. The same meanings and models for division of whole numbers are applicable to division of 
fractions. The most accessible meaning for division operations is repeated subtraction using number 
line and area models. When sharing or grouping fractional amounts, it is exceedingly difficult to 
conceptualise the processes involved. It is useful at this point to explore and connect to the abstract 
mathematical meaning of division which is multiplication by inverse or reciprocal.  

Cycle 4: Representation of Fractions as Decimals 

This cycle connects representations of common fractions to their decimal fraction counterparts 
starting with tenths, hundredths and thousandths. This is then extended to other common fractions 
and their conversion to decimal fractions. This exploration will include terminating and recurring 
decimals and irrational numbers (specifically pi). 

Cycle 5: Additive Operations with Decimals 

This cycle extends addition and subtraction concepts and processes explored with whole numbers 
and fractions to addition and subtraction of decimals. Decimal fraction operations can be explored as 
an extension of common fractions with denominators that are powers of ten. They can also be 
viewed as an extension and reinforcement of place value additive operation techniques using 
previously explored whole number strategies.  

Cycle 6: Multiplicative Operations with Decimals 

This cycle develops strategies for multiplicative operations with decimals by connecting 
multiplication concepts and processes with fraction concepts. The most accessible meanings of 
multiplicative operations for decimals are repeated addition/subtraction and change. Area and 
number line models represent problems and assist thinking. Decimal fraction operations can be 
explored both as an extension of common fraction operations with denominators that are multiples 
of ten, and as an extension and reinforcement of place value multiplicative operation techniques and 
strategies.  

Cycle 7: Metric Measure Conversions and Scientific Notation 

Units of metric measure, like the decimal number system, rely on place value groupings where places 
increase or decrease in multiples of ten. Knowledge of the base unit for a measured attribute, 
prefixes for standard units and the multiples that apply to standard units makes conversion between 
units of measure relatively simple if connections can be made to place value understandings. 
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Literacy Development 
Core to the development of number and operation concepts and their expression at varying levels of 
representational abstraction (from concrete-enactive through to symbolic) is the use of language 
that is consistent with the organisation of the mathematical concepts. In this unit the following key 
language should be explicitly developed with students. This ensures they understand both the 
everyday and mathematical uses of each term and, where applicable, the differences and similarities 
between these. 

Cycle 1: Additive Operations with Fractions 

Same or like denominator, different or unlike denominator, common denominator, lowest common 
denominator, equivalent fractions, tenths, hundredths, thousandths, common fraction 

Cycle 2: Multiplication of Fractions 

Multiply, repeated addition/subtraction of fractions, fraction of a fraction, change, lowest common 
denominator 

Cycle 3: Division of Fractions 

Multiplicative inverse, how many fractions in, how many shares of, reciprocal 

Cycle 4: Representation of Fractions as Decimals 

Tenths, hundredths, thousandths, decimal fractions, divide, denominator, equivalent fractions, 
repeating decimals, recurring decimals, terminating decimals, irrational numbers, pi, π, rounding, 
significant figures, significant places, circumference, diameter 

Cycle 5: Additive Operations with Decimals 

Equivalent fractions, place value, tenths, hundredths, thousandths, decimal fraction, decimal point 

Cycle 6: Multiplicative Operations with Decimals 

Multiply, fraction of a fraction, change, how many fractions in, how many shares of, decimal fraction, 
tenths, hundredths, thousandths 

Cycle 7: Metric Measure Conversions and Scientific Notation 

Standard units, metre, centimetre, millimetre, kilometre, bigger and smaller units, prefixes for 
standard length measure units 

 

 

 



Name:              Date:    
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Can you do this? #1 

1. Continue the sequences and identify the changes  

Example:           𝟏
𝟗
 ,    𝟑

𝟗
 ,    𝟓

𝟗
 ,    𝟕

𝟗
 ,    𝟗

𝟗
            Change: + 𝟐

𝟗
 

(a)   1
15

 , 5
15

 , 9
15

 , ________ , ________ , ________       Change: _________ 

Obj. 
6.1.1 

a) □ □ 
□□□ 

(b)   30
12

 , 25
12

 , 20
12

 , ________ , ________ , ________        Change: ________ Obj. 
6.1.2 

b) □□ 
□□□  

(c) 1 1
10

 , 1 4
10

 , 1 7
10

 , ________ , ________ , ________   Change: ________ Obj. 
6.1.3 

c) □□ 
□□□  

2. Solve the following equations: 

(a) 3
5

 +  4
5

=  

(b) 7
8

 +  3
6

= 

(c) 24
30
−  2

10
=   

 

Obj. 
6.1.4 
a) □  

 
Obj. 

6.1.6 
b) □ 

 
Obj. 

6.1.5 
c) □ 

3. Write the equation and solve the problem for the following stories: 

(a) Julie drove 31 1
2
 km from home to a shopping centre, then drove 

12 3
4
 km to a friend’s place, then drove 26 7

8
 km home. How many 

kilometres did she drive? 

               

               

               

Obj. 
6.1.4 
a) i.□  

ii.□ 
iii.□  
iv.□ 
v.□     

(b) Jim had 3
4
 of a chocolate bar. He gave 1

3
 of the chocolate bar to his 

friend. How much of the chocolate bar did Jim keep? 

               

               

               

Obj. 
6.1.7 

b) i.□  
ii.□ 
iii.□  
iv.□ 
v.□     
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Cycle 1: Additive Operations with Fractions 

Overview 

 Big Idea 

This cycle extends addition and subtraction concepts and processes explored with whole numbers to 
addition and subtraction of fractions. Additive operations with common fractions and mixed 
numbers rely on the use of equivalence to generate like denominators. This enables operations on 
the numerators as if they are whole numbers.   

 Objectives 

By the end of this cycle, students should be able to: 

6.1.1 Describe, continue and create patterns with fractions resulting from addition and subtraction. 
[5NA107] 

6.1.2 Describe, continue and create patterns with improper fractions resulting from addition and 
subtraction. [5NA107] 

6.1.3 Describe, continue and create patterns with mixed numbers resulting from addition and 
subtraction. [5NA107] 

6.1.4 Solve problems involving addition of fractions with the same or related denominators. 
[6NA126] 

6.1.5 Solve problems involving subtraction of fractions with the same or related denominators. 
[6NA126] 

6.1.6 Solve problems involving addition of fractions with unrelated denominators. [7NA153]  

6.1.7 Solve problems involving subtraction of fractions with unrelated denominators. [7NA153]  

 Conceptual Links 

Counting and additive operation strategies developed with whole numbers may be applied to 
additive operations with fractions that have the same or related denominators. Operating on 
fractions with unrelated denominators consolidates multiplicative skills of finding factors, common 
factors and multiples.  

Additive operations with common fractions are used in contexts where fractions are not usually 
expressed as decimals (e.g., portion sizes, commonly encountered fractions such as quarters, halves, 
thirds and fifths). Similarly, likelihood is commonly expressed as a common fraction. Combined 
probability calculations may use additive operations with common fractions. For example, the 
likelihood of rolling any given number on a fair 6-sided die is 1

6
. The likelihood of rolling a 1, 2, or 3, is 

1
6
 + 1

6
 +  

1
6
. While it is possible to use a calculator to convert fractions to decimals and then 

add/subtract the decimals, it is still useful for students to develop the skills needed to work with 
fractions for algebraic work with formulae and for instances where the common fraction becomes a 
non-terminating or repeating decimal (e.g., items partitioned into sixths, ninths, sevenths). 
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 Materials 

For Cycle 1 you may need: 

• fraction sticks  

• part – Whole chart (similar to PVC) 

• connect 5/cover the board games 

• fraction base boards 

• overlays 

• thinkboard 

 Key Language 

Same or like denominator, different or unlike denominator, common denominator, lowest common 
denominator, equivalent fractions, tenths, hundredths, thousandths, common fraction 

 

 
Definitions 

Like denominator: same denominator 

Related denominators: denominators that are obviously related multiplicatively 

 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• What fractions are you adding/subtracting? 

• Are the denominators the same? 

• Are the denominators related? 

• What will be a useful common denominator to use? 

• How can you find the equivalent fractions with common denominators? 

 

Portfolio Task 

Additive operations with fractions could be used to start Portfolio Task 06: Calculating Costs, 
although the task will be better conducted using multiplicative operations. 
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RAMR Cycle 
The focus of this cycle is additive operations with common fractions, improper fractions and mixed 
numbers. To add and subtract common fractions, it is necessary for them to have common 
denominators. Area and number line models are used to model additive fraction operations. 
Students should continue interpreting story contexts that use fractional values and broaden their 
vocabulary for creating their own stories to suit equations. For this cycle, the focus of the abstraction 
will be additive operations with common fractions. Additive operations with improper fractions and 
mixed numbers will be included in the mathematics phase. 

 Reality 

Real contexts involving joining or separating are ideal for operations with common fractions. 
Reinforce with students that fractions are the same size pieces of a whole. Contexts that use 
common fractions include joining and separating pieces of pizzas, pies or cakes, or any other items 
that are naturally shared as pieces, and are ideal for additive operations.  

 Abstraction 

The abstraction sequence for this cycle begins with students’ experience of finding equivalent 
fractions, then leads to joining or separating available fraction pieces to find a new total amount. A 
suggested sequence of activities is as follows: 

Like denominators 

1. Kinaesthetic activity. Act out sharing pie into eighths. Leave three 
pieces on one plate and four pieces on another plate. Ask 
students how many pieces if they are put on one plate. Identify 
the fractions of pie that each plate represents. Name the fraction 
of the whole pie that is on the plate (seven eighths). 

2. Represent/model with materials. Model with unifix cubes or 
circle pieces and connect to language and symbols. For example, 
three eighths add four eighths  = seven eighths. 

3. Reinforce connection to addition with whole numbers that need 
to be the same unit.  

4. Represent/model on a number line to reinforce the like 
denominators and the jumps for addition of common fractions. 
Reinforce part-part-total as for whole number addition. 

5. Repeat steps 1 – 4 to explore the inverse operation of subtraction with fractions with like 
denominators. Model subtraction with the area and number line models as shown. 
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Unlike denominators 

1. Kinaesthetic activity. Act out sharing pie, cutting one pie into fifths and the other into thirds (like 
the Chocolate Cake Game). Put 2

3
 on a plate and add 3

5
. Ask students how much pie they have. 

Reinforce that just adding pieces will not work as the units are different. 

2. Represent/model with materials. Use virtual fraction strips to model adding 2
3
 to 3

5
. Connect to 

language and symbols and write the equation for the addition. Compare 2
3
 + 3

5
 with a whole 

fraction strip to identify that this is equivalent to one whole with some more. 

 Resource 
Resource 6.1.1 Virtual fraction strips 
Resource 6.1.2 Fraction wall 

3. Discuss how the fractions were added together because the units were the same. Ask students 
for strategies to add these fractions. Suggest using equivalent fractions with like denominators 
that can be added together. It is simplest to continue with the area model.  

4. Start with two congruent rectangles and divide one into thirds and 
the other into fifths and overlay them (overhead transparencies or 
virtual manipulatives are ideal for this representation) to create one 
rectangle with one dimension divided into thirds and the other into 
fifths. Using one rectangle to show both fractions assists with the 
maintenance of the whole and in seeing the equivalent fractions. 
One dimension of the rectangle is used to show each fraction. 

Using the combined diagram, the fractions in the computation 
can be represented. Students can use counting or multiplication 
facts to identify that two-thirds is the same as 10

15
 and that three-

fifths is the same as 9
15

.  Now that fractions have the same unit, 
they can be added. 

 Resource 
Resource 6.1.3 Fraction baseboards and overlays 
Resource 6.1.4 Virtual fraction baseboards and overlays 

5. Reinforce part-part-total from operations with whole numbers. Ensure students can identify 
which are the parts in the story and which is the total – in this case, 

2
3
 and 3

5 are the parts and we 

are looking for the total of 19
15

 or 1 4
15

.  

6. Model with the number line using fraction strip pieces to 
partition the line to further cement the process and 
connect to the symbols as shown. 

7. Connect models to symbols. Encourage students to look for 
the patterns in the symbols. Generalise the relationship 
between the original denominators and the equivalent 
common denominator. Use this student-generated rule to 
reduce reliance on materials or drawn representation. 

8. Repeat steps 1-8 to explore subtraction of fractions with 
unlike denominators by separating pie onto plates. Wording 
of these problems is tricky. For example, I have 3

4
 of a pie 

and give you 1
3
 of a whole pie, how much pie will I have left? 

Model with area and numberline as shown. Continue to 
reinforce story contexts, part-part-total and the triad. 
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 Mathematics 

 Language/symbols and practice 

Practice additive operations with common fractions 

Engage students with constructing their own problem situations. Ask them to use 
addition/subtraction of common fractions with like denominators and addition/subtraction of 
common fractions with unlike denominators. 

 Resource Resource 6.1.5 Additive problems with common fractions 

Additive operations with improper fractions 

Additive operations with improper fractions can be connected to the processes used for common 
fractions. The level of complexity increases if answers are written as mixed numbers. Reinforce 
conversion of improper fractions to mixed numbers (from Unit 05).  

Discuss adding or subtracting improper fractions based on real story contexts such as: 

Five pizzas were cut into six pieces and put out on platters. If a person took 4 pieces of pizza, 
what fraction of pizza was left on platters? ( 30

6
 — 4

6
 ).  

Engage students with constructing their own problem situations. Ask them to give examples of both 
addition and subtraction of improper fractions with like denominators, and addition and subtraction 
of improper fractions with unlike denominators.  

 Resource Resource 6.1.6 Additive problems with improper fractions 

Additive operations with mixed numbers 

Ask students to suggest strategies they can use to add mixed numbers before teaching strategies. 
There are two possible strategies: 

• use part-whole thinking, add the wholes and the parts, then simplify any fractions that result; or  

• convert mixed numbers to improper fractions and then add and follow by simplifying fractions 
back to mixed numbers. 

Allow students to model these strategies with materials and use whichever strategy gives them the 
most consistent results. 

Ensure students experiment and practise with both problem types: mixed numbers with like 
denominators and mixed numbers with unlike denominators. 

 Resource 
Resource 6.1.7 Additive problems with mixed numbers 
Resource 6.1.8 Whole-part charts 

 Connections 

Properties of numbers and operations 

Explore properties of additive operations encountered with whole numbers such as: commutativity, 
associativity, inverse operations, part-part-total, and triadic relationships between parts of a story 
problem. Ensure that students understand these properties apply to common fractions as well as 
whole numbers. 
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Problem construction and interpretation 

Practice writing equations with fractions from stories and writing stories from equations for additive 
operations. Focus on the parts and totals within the equations and ensure the stories have suitable 
unknown parts or totals for the operation the number sentence suggests. 

Try to move students to understanding that a pronumeral can be any symbol or letter as it 
represents the unknown quantity of a unit not the unit itself. For example, ‘s’ does not need to stand 
for spent, socks, shoes, sandals, seagulls … it can be all these things but also displacement, distance, 
dogs, cats, fish, … and so on. Discuss which of these items make sense as fractions and which do not 
(for example, half of a seagull is a little gruesome but a half metre long plank of wood makes sense).  

 Reflection 

 Check the idea  

Return to Thinkboards or concept maps for students to generate and connect fraction 
representations and additive strategies. Challenge students to find fraction combinations that add to 
1 whole, 2 wholes, and so on. Find fraction combinations that can be subtracted from 3 to get to a 
half. 

 Resource 
Resource 6.1.9 Connect 5/Cover the board games 
Resource 6.1.10 Virtual Connect 5/Cover the board games 

 Apply the idea 

Ask students to consider usage of cereal packets and other bulk items in terms of servings. Consider 
using these items for a week. Determine what fraction of the cereal students might eat in a week on 
their own, if a friend stayed for three meals and so on.  

 Extend the idea 

When students are comfortable working with numeric representations of fractions, extend their 
thinking to unknowns or variables within fractions. Start with one fraction numerator represented as 
a symbol, progress to two or more fraction numerators represented as a symbol, then include 
examples where the denominator is a symbol. 

For example:  
𝑚
6

+ 4
6

= 𝑚+4
6

   𝑚
6

+ 𝑛
6

= 𝑚+𝑛
6

   𝑚
𝑝

+ 𝑛
𝑝

= 𝑚+𝑛
𝑝

  

𝑚+4
6

− 𝑚
6

= 4
6
  𝑚+𝑛

6
−  𝑚

6
= 𝑛

6
  𝑚+𝑛

𝑝
− 𝑚

𝑝
= 𝑛

𝑝
 

Encourage students to generalise addition and subtraction of fractions with unlike denominators to 
algebra. 

This means in general that 𝑎𝑏 +  𝑐𝑑 can be added by converting each to the common denominator of 
𝑏 ×  𝑑, and that 𝑎𝑏 = (𝑎×𝑑)

(𝑏×𝑑) (multiplying top and bottom by d) and that 𝑐𝑑 = (𝑏×𝑐)
(𝑏×𝑑) (multiplying top and 

bottom by b), meaning that: 
𝑎
𝑏

+  𝑐
𝑑

=  𝑎 × 𝑑 + 𝑏 × 𝑐
𝑏 × 𝑑
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 

 

 



Name:              Date:    
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Can you do this? #2 

1. What is 1
6
 of 36?    Obj. 

6.2.1 
 □ 

2. What is 6 lots of  3
8
 ?    Obj. 

6.2.2 
i. □  

ii. □ 

3. Solve the equations: 

a)     3
8

× 7
3

= 
Obj. 

6.2.3 
i. □  

ii. □  

b)     2 3
8

× 2
3

= Obj. 
6.2.4 

i. □  
ii. □  

iii. □  
iv. □ 

c)     3
8

× 3 2
3

= Obj. 
6.2.4 

i. □  
ii. □  

iii. □  
iv. □ 

4. Write the equation and solve the problem for the following story: 

Five friends each had 7
8
 of a pizza. How much pizza did they have 

altogether? 

               

               

               

               

 

Obj. 
6.2.2 

i. □ 
ii. □ 

iii. □ 
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Cycle 2: Multiplication of Fractions 

Overview 

 Big Idea 

This cycle develops strategies for multiplication of fractions by connecting multiplication concepts 
and processes with fraction concepts. The most accessible meanings for multiplication of fractions 
are repeated addition and change. Number line and area models can be used to represent problems 
and assist thinking.  

 Objectives 

By the end of this cycle, students should be able to: 

6.2.1 Find a simple fraction of a quantity where the result is a whole number. [6NA127] 

6.2.2 Find whole number multiples of same-size fractions. [7NA154] 

6.2.3 Multiply a fraction by a fraction. [7NA154] 

6.2.4 Multiply a mixed number by a fraction or mixed number. [7NA154] 

 Conceptual Links 

This cycle links to multiplicative operations with whole numbers and builds on ideas explored with 
equivalent fractions. Multiplicative operations with fractions are necessary to work with percentage 
problems, engage with financial mathematics, explore multiplicative relationships in measurement, 
statistics and probability, and algebraic applications of fractions.  

It is possible to convert common fractions and mixed numbers to decimals for calculations. This 
might appear to render pen and paper calculations with fractions unnecessary. However, the 
processes and the understanding behind these kinds of calculations are useful for common fractions 
that do not have terminating decimal forms. Pen and paper fraction calculations are also useful for 
working with algebraic formulae, manipulating problems with unknowns, and connecting to 
geometry, scale and proportion. 

 Materials 

For Cycle 2 you may need: 

• PVC per student 

• calculators 

• hundredths grids 

• fraction baseboards and overlays 

 

 Key Language 

Multiply, repeated addition of fractions, fraction of a fraction, change, lowest common denominator, 
highest common factor 
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Definitions 

Highest common factor: when factors are determined for a pair of numbers, common factors may 
arise. The highest common factor is the largest of these. 

Lowest common denominator: the smallest number that can be used as a denominator for 2 or more 
fractions. 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• Finding a fraction of a quantity where the result is a whole number is clearly linked to finding a 
fraction of a collection explored in Unit 05. This connection should be highlighted.  

• Draw students’ attention to the fact that if they are finding a fraction of a collection or whole 
number, they are effectively partitioning the collection into a quantity of groups represented by 
the denominator, and then adding up the total number in the quantity of these groups 
represented by the numerator. 

• Clearly link finding a fraction of a whole number to dividing the whole number by the 
denominator of the fraction and multiplying by the numerator. 

• Are you finding a fraction of a whole number or a fraction of a fraction? 

• What strategy will you use to multiply? 

• Can you simplify your answer?  

• Can you find a simpler equivalent fraction to your answer? 

• Is there a common factor between the numerator and the denominator? 

• Is your answer an improper fraction? 

• How many times can you subtract the denominator from the numerator? 

• What is left over? 

• Can you write that as a mixed number? 

 

 

Portfolio Task 

Sections of the Portfolio Task 06: Calculating Costs that combine multiples of an item in the shopping 
list or recipe tasks may be completed following this cycle. 

  



 

Page 16  Cycle 2: Multiplication of fractions YuMi Deadly Maths 

RAMR Cycle 
The focus of this cycle is the multiplication of common fractions, improper fractions and mixed 
numbers. Using an array or area model, multiplication of common fractions is relatively 
straightforward as it extends on equivalent fraction ideas from Unit 05. Mixed numbers may be 
converted to improper fractions and multiplied like common fractions or can be treated in parts 
using an array or area model. 

 Reality 

Real contexts for common fractions arise when there are multiple pieces of the same size fraction or 
when further sharing already partitioned items. For example, there may be three halves of pizzas of 
different flavours left over; overall this is 1

2
+ 1

2
 +  1

2
𝑜𝑜 3

1
 × 1

2
. Alternatively, half a pizza may be 

further shared with 5 people so that each person receives one fifth of half a pizza. Note the language 
shift from “by” to “of”. Both these forms of language are useful for linking to models of multiplication 
of fractions. 

Multiples of same size fractions can be addressed using examples that multiply a whole number by a 
fraction and can use repeated addition ideas and strategies already developed. Further partitioning a 
fraction into smaller pieces requires a little more thought.  

Identifying the areas on a netball court or soccer pitch by position may work if students are sports-
minded. For example, if each team “owns” half the court/pitch, players in wing positions tend to 
cover from the edge across to the middle. If they are expected to cover half of a half, how much of 
the whole court/pitch is this? Discuss with students the real world effect of partitioning a fraction.  

 Abstraction 

The abstraction sequence for this cycle takes students from physical experiences of multiples of the 
same size fractions to develop strategies for solving these types of problems using language and 
symbols. Understandings are then extended to develop processes for calculation of a fraction of a 
fraction using array and area models through to symbolic representations of fractions. These ideas 
and processes are extended in the mathematics phase to include strategies for improper fractions 
and mixed numbers. A suggested sequence of activities is as follows: 

Multiples of same-sized fractions 

1. Kinaesthetic activity. Explore examples of multiple fractions with students. For example, if three 
students hold up three fingers each, they are each holding up three fifths of a hand of fingers. 
Collectively, they are holding up nine fingers which would be nine fifths if collected into hand-
sized groups.  

2. Connect to language and symbols. Represent the fingers example with drawings and symbols to 
show 3

1
 × 3

5
 =  9

5
. 
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Partitioning a fraction 

1. Kinaesthetic activity. Explore the sections of a netball/basketball/football court/field as fractions 
of a whole. If physically visiting the field is not practical, a diagram on PowerPoint may be used to 
highlight the parts of the field and connect these to fractions of the whole. Discuss individual 
player positions and the area they cover in play as a part of these other fractions. Alternatively, 
consider fractions of a fraction with pizza slices or cake pieces. 

 Resource 
Resource 6.2.1 Sports field fractions 
Resource 6.2.2 Sports field fractions PowerPoint 

2. Represent/model with materials. There are two methods of exploring multiplication of fractions 
using an array or area model: a fraction of a fraction; or a fraction by a fraction. The models for 
these are almost identical but use different processes and rely on different thinking.  

Fraction of a fraction: Multiplying fractions involves finding a part of a part. In this 
understanding, it is helpful to think of multiplication in relation to fractions using ‘of’ instead of 
‘by’. For example, to model 2

3
 × 3

5
, a whole is first partitioned to show 3

5
, then the whole is 

partitioned the other way to show 2
3
 . In this example, the whole is finally partitioned into 

fifteenths. The section that is double shaded represents 2
3

 × 3
5
 or six fifteenths. This is similar to 

the process students used to find equivalent fractions. 

Fraction by a fraction: This method represents the whole to be partitioned as a square unit that 
is partitioned into thirds one way and fifths the other. The array that we are interested in is the 
part of the whole represented by a shaded array of 2

3
 × 3

5
 or area of 2

3
  unit × 3

5
  unit. The 

rectangle 2
3
  by 3

5
 can be calculated as a fraction of one square unit.  This method breaks the unit 

into thirds by fifths then counts 2 by 3 to find six fifteenths. 

 

3. Connect to language and sysmbol patterns. As a result of either method, it is important to 
engage students in discussion around the pattern that works with the symbols. Using the 
example 2

3
 ×  3

5
=  2×3

3×5
  ask students for the pattern or connection between the digits in the 

multiplication and the counted result. Test this out with a few examples to establish the rule or 
generalisation. This pattern can then be used without models. 
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2
3

 ×  
3
5
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 Mathematics 

Within the Mathematics phase, it is important to practice problems that involve finding multiples of 
same-size fractions using set (considered in Abstraction), number line and array or area models. 
These are most easily conceptualised as repeated addition. Similarly, problems exploring fraction 
“of” or “by” a fraction should be represented using set, number line and array or area (explored in 
Abstraction) models. These ideas should be further extended to include multiplication of mixed 
numbers and multiplication of decimal fractions. 

 Language/symbols and practice 

Multiples of fractions 

Consider examples like collating multiple pieces of pizza or cake into boxes, identifying multiples of 
subgroups of a collection, finding multiple distances or measurements expressed as fractions, or 
doubling a recipe which uses fractional measures. These examples all describe multiplication of a 
fraction by a whole number. 

 Resource Resource 6.2.3 Multiples of fractions 

Fraction of or by a fraction 

Practise examples of finding a part of an already partitioned item that might be represented by set, 
number line and array or area models. For example, find half of a quarter-sized group, travel half a 
fractional distance, find a part of an already partitioned area, or reduce a recipe.  

 Resource Resource 6.2.4 Fractions of or by fractions 

Multiplying mixed numbers 

Multiplication of mixed numbers can be addressed in two ways. The first is to convert the mixed 
numbers to improper fractions and then work through as for “Fraction of or by a fraction”.  

Alternatively, students can apply the separation strategy. In this case, students use an area model to 
work through the multiplication. For example, 1 3

5
 ×  3 1

4
 can be represented as a rectangle with a 

length of one mixed number, a width of the other mixed number, from which the area is calculated. 
This method allows students to work with smaller operations that they can calculate simply and 
provides a picture that ensures that all parts of the problem are addressed. 

The areas of each square are then added together. 1 + 1 + 1 + 1
4
 + 3

5
 + 3

5
 + 3

5
 + 3

20
 = 344

20
 = 51

5
 

Further notes relating to this method of multiplication of mixed numbers can be found in Resource 
6.2.5 Multiplication of mixed numbers. 

 Resource Resource 6.2.5 Multiplication of mixed numbers 

1 1 1 
 

3
5

× 1 
3
5

× 1 
3
5

× 1 
  

1        +          1        +         1        + 1
4
 

3
5

×
1
4

 

1 ×
1
4

 

3
5

 

1 

+ 
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 Reflection 

 Check the idea  

Sketch a netball, basketball, soccer or football field (depending on student interest). Partition into 
thirds or quarters and determine what fraction of a third or quarter of the field each position covers. 

Explore contexts where half a cake or pizza is cut into quarters or thirds. Find what fraction of the 
whole cake or pizza is represented by each piece.  

 Apply the idea 

Practice increasing and reducing quantities in recipes and mixtures. For example: 

Find the quantities for three and a half of the following recipe: 

1 Cup of flour    Answer: 1 × 3 1
2

= 3 1
2
 

1 Cup of milk    Answer: 1 × 3 1
2

= 3 1
2
 

1
2
 teaspoon of bicarb soda  Answer: 1

2
× 3 1

2
= 1

2
× 7

2
= 7

4
= 1 3

4
 

1
3
 Cup of sugar    Answer: 1

3
× 3 1

2
= 1

3
× 7

2
= 7

6
= 1 1

6
 

1 teaspoon of vanilla   Answer: 1 × 3 1
2

= 3 1
2
 

Alternative contexts exist with mixtures of chemicals for weed spraying, insect repellent for stock, 
cordials, non-alcoholic cocktails, paint colours. Explore several contexts that use fractions where 
multiples or parts of these are needed. 

 Extend the idea 

The King’s Chessboard story explores what happens when an initial quantity of 1 is continually 
doubled. This investigation could be extended to start with a large whole and continually halve. For 
example, in provincial France (a very long time ago) property was shared equally between surviving 
sons. If an initial piece of land is one whole and is consistently halved across successive generations 
(assuming each generation only has two sons), what fraction of the original land will each son in the 
5th or 6th generation receive? What if each generation has three sons? If the original piece of land is 
1000 m by 1000 m, when will partitioning the pieces no longer be useful? Is there a point where a 
generation will receive no land? 

Provide students with a range of fractions. See if they can determine what they need to multiply each 
fraction by to reach a whole number. Extend this idea further to see if they can determine what they 
can multiply a fraction by to make one whole. 

Consider multiplication of fractions that include variables or unknown amounts. Can these be 
multiplied the same as fractions with numerals? For example, 𝑎

6
 ×  3

5
;  𝑎
6

 × 𝑏
5

;  5
𝑎

 ×  𝑏
5

;  𝑎
𝑏

 × 𝑐
𝑑

. 
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 

 

 



Name:              Date:    
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Can you do this? #3 

1. How many quarters in: 

(a) 1 3
4
          quarters 

Obj. 
6.3.1 
a) □  

(b) 5 1
2
         quarters Obj. 

6.3.1 
b) □ 

2. Solve the equations: 

(a) 1
2
 ÷ 4 = 

 

Obj. 
6.3.2 
a)i. □  

ii. □ 

(b) 7
5

÷ 1
2

= 

 

Obj. 
6.3.3 

b)i. □  
ii. □ 

iii. □ 

3. Write the equation and solve the problem: 

(a) 4 1
2
 cakes were shared evenly between 9 students. How much cake 

did each student receive? 

 

 

Obj. 
6.3.2 
 i. □  
ii. □ 

iii. □ 

(b) Eight students in the class had mobile phones at school.  
There were 24 students in the class. 
What fraction of the class had mobile phones at school? 
_____________ 

Obj. 
6.3.4 

i. □  
ii. □ 
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Cycle 3: Division of Fractions 

Overview 

 Big Idea 

This cycle connects division concepts and processes explored with whole numbers to fraction 
concepts. The same meanings and models for division of whole numbers are applicable to division of 
fractions. The most accessible meaning for division operations is repeated subtraction using number 
line and area models. When sharing or grouping with fractional amounts, it is exceedingly difficult to 
conceptualise the processes involved. It is useful at this point to explore and connect to the abstract 
mathematical meaning of division which is multiplication by inverse or reciprocal.  

 Objectives 

By the end of this cycle, students should be able to: 

6.3.1 Find how many of a fractional quantity in a whole number. [7NA154] 

6.3.2 Divide a fraction by a whole number. [7NA154] 

6.3.3 Find how many of a fractional quantity in a fraction. [7NA154] 

6.3.4 Express one quantity as a fraction of another. [7NA155] 

 Conceptual Links 

This cycle links to multiplicative operations with whole numbers, repeated addition of fractions, and 
equivalent fraction concepts. This cycle also consolidates understanding of multiplicative 
relationships in measurement, statistics and probability, and algebraic applications of fractions and 
decimals. 

Concepts explored within this cycle provide initial skills in multiplicative operations with fractions and 
decimals. These skills are required in future units to work with percentage problems, and engage 
with financial mathematics.  

 Materials 

For Cycle 3 you may need: 

• PVC per student 

• shopping catalogues (or access to 
online) 

• calculators 

• hundredths grids 

• fraction baseboards and overlays 

 

 Key Language 

Multiplicative inverse, reciprocal, how many fractions in, how many shares of, decimal fraction, 
tenths, hundredths, thousandths,  
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Definitions 

Reciprocal: The reciprocal of a number is 1 divided by the number, also known as multiplicative 
inverse. Multiplying a number by its reciprocal equals one. For example, 3 × 1

3
 = 1. 

 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• What is the total amount that you have? 

• What size pieces or how many pieces are you sharing the total amount by? What number is the 
total amount being divided by?  

• What is dividing a quantity the same as? (Finding a fraction of or multiplying by the fraction or 
reciprocal). 

 

Portfolio Task 

Sections of the Portfolio Task 06: Calculating Costs that partition an item in the shopping list or recipe 
tasks may be completed following this cycle. 
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RAMR Cycle 

 

Reality 

The simplest attribute to use when exploring division of fractions is length. For example, where a 
length has already been partitioned, it is possible to explore how many pieces there are of a certain 
fraction size. So, if sharing a Killer Python jelly snake, how many quarter-sized pieces are there in a 
whole snake? How many quarter-sized pieces in half a snake? If half a snake is shared with four 
people, what fraction of a whole snake would they have? Other real contexts for sharing using 
fractions might include sharing lengths of ribbon, chocolate logs, kabana, buckets or containers of 
water, distances between places, mass, capacity and volume. Other possible stories could include: 

Area/sharing: I have  3
4
 cake to share amongst 6 students, how much of a whole cake will each 

student receive? (3
4
 ÷ 6) (Any food item could be used in this scenario.) 

Length: How many pieces of ribbon 2
5
 of a metre long can I cut from 2 m of ribbon? (2 ÷ 2

5
) 

Volume: My bucket holds 1
4
 L. How many times will I need to fill my bucket to fill a tank that 

holds 35 1
2
  litres of water? (35 1

2
÷ 1
4
) 

Using contextual problems helps students to experience the connection to using the inverse when 
dividing fractions. It makes sense to realise that when sharing quantities with 6 people, we are 
actually finding 1

6
 of the quantity; and that a greater quantity of smaller buckets are needed to fill a 

container than if larger buckets are used.  

 

Abstraction 

The abstraction sequence for this cycle starts from student understanding of multiplication “of” or 
“by” fractions and works towards understanding division of or by fractions. Development of the 
process to work with division of fractions requires students to understand multiplicative inverse or 
multiplication by inverse as it applies to fractions. Area, length or volume contexts and models may 
be used to explore division of or by fractions according to students’ interests. A suggested sequence 
of activities using length or area models is as follows: 

Whole number divided by a fraction 

1. Kinaesthetic activity. Choose the most practical length or area context to use from reality that 
can be adapted to students’ interests. For example, explore how many 1

2
 m intervals there are on 

the running track. Students could step this out and count to determine 100m ÷ 1
2
 m. They should 

find that they have 200 × 1
2
 m intervals on the running track (28 m ÷ 1

2
 m connects to 56 × 1

2
 m 

intervals on the netball court or soccer field). Try to lead students to see that there are double 
the original number when they find how many halves (or dividing by a half). Explore this with 
other distances to consolidate. Alternatively, share an area model like cake or pizza. Ask students 
how many halves there will be in one cake, extend this to how many halves in two cakes and so 
on until students recognise that they are doubling the number of cakes to find how many halves. 

2. Represent/model with materials. Encourage students to draw the story previously acted out. 
Ensure they can visualise the running track, basketball court, or cake/pizza, the size of the pieces 
it is being partitioned into and the resulting multiplier for the original value. For example, the 
basketball court is 28 m partitioned into half metre sections, so the number of sections is double 
the length of the court; there are 6 cakes cut into halves so there will be double 6 pieces. 
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3. Connect to symbols. Encourage students to label their drawings with the length, size of the 
partitions and the equation that represents the story. For example, 28 ÷ 1

2
 = 56. Also have them 

write the corresponding relationship they have noticed:                28 × 2 = 56 

4. Test this idea with other unit fractions (for example, how many thirds, quarters or fifths in a 
whole number). See if students can identify a general rule that dividing by a unit fraction is the 
same as multiplying by the denominator as a whole number.  

5. Connect to language. Discuss reciprocal as the mathematical word for the inverse of a half (1
2
 is 

the reciprocal of 2
1
 or 2). See what happens when a number and its reciprocal are multiplied 

together, for example, 2 × 1
2
, 3 × 1

3
, 4 × 1

4
, and so on (always equals one). 

Fraction divided by a whole number 

1. Kinaesthetic activity. Choose the most practical length or area context to use from reality and 
students’ interests. For example, explore sharing 3

4
 cake amongst 6 students. Discuss how many 

pieces the amount of cake needs to be split into for 6 people and what an equivalent fraction for 
3
4
 cake might be (6

8
 𝑜𝑜 18

24
 are possibilities). Share the resulting fractions of cake so that each 

person receives 1
6
  of the 3

4
 cake each. Connect the idea that sharing, partitioning or dividing a 

cake into six pieces means they have one sixth of the available cake each. Discuss what fraction 
of a whole cake each person has. Alternatively, explore how far up a netball court or soccer field 
a player might travel as three quarters of the court. If this were broken into six sections, what 
fraction of the court would each section be? A length of wool that started as three quarters of 
the court long cut into six equal pieces may be a suitable representation. 

2. Represent/model with materials. Have students draw the story previously acted out. For 
example, draw a rectangular cake and name as 3

4
 of a cake. Dot in where a whole cake might be. 

Partition the 3
4
 of a cake into six pieces. Identify each partition as 1

6
 of 3

4
. Discuss with students 

how many pieces would be in a whole cake if it was partitioned into these size pieces. Discuss 
what fraction of a whole cake each of the 6 people are receiving. 

3. Connect to symbols. Label the drawing as 3
4
 shared with 6. Write the equation that represents the 

story. For example, 3
4
 ÷ 6. Also write the corresponding relationship they noticed as 3

4
 × 1

6
. Connect 

this idea to the idea of multiplication by reciprocal previously explored. 

4. Test this idea with other whole number divisors (for example, what happens when a fraction is 
shared further with 2, 3, 4 and so on). See if students can identify a general rule that dividing a 
fraction by a whole number is the same as multiplying by a unit fraction with that denominator.  

Fraction divided by a fraction 

1. Kinaesthetic activity. Choose the most practical length or area context to use from reality or 
students’ interests. For example, explore sharing 3

4
 cake into eighth-sized pieces. Discuss how 

many pieces the original cake was split into to have 3
4
 cake and what eighth-sized pieces look like. 

Identify how many eighth-sized pieces in 3
4
 cake. Connect to equivalent fractions. Discuss the fact 

that there are more of a smaller size fraction in a bigger fraction. Alternatively, explore how far 
up a netball court or soccer field a player might travel as three quarters of the court. If this were 

 Resource Resource 6.3.1 How many fractions in a whole number? 

 Resource Resource 6.3.2 Fraction shared by a whole number 
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broken further into eighths for several positions to cover, what fraction of the side of the court 
would each section be? A length of wool that started as three quarters of the basketball court 
long, partitioned into three for quarters, then each of these halved again for eighths might be a 
suitable representation. Discuss with students how many pieces long the whole court or field 
would be and how many there are in three quarters when they are represented as eighths. 

2. Represent/model with materials. Have students draw the story previously acted out. For 
example, draw a rectangular cake partitioned to show three quarters. Partition again to make the 
cake into eighths and count how many eighths are in the cake they have. Identify and name the 
cake as 3

4
 of a cake, and how many eighths in 3

4
 of a cake.  

3. Connect to symbols. Label the drawing as 3
4
 shared by 1

8
. Write the equation that represents the 

story. For example, 3
4
 ÷ 1

8
. Connect to previous examples that involved division of fractions and 

the idea of reciprocals. Also write the corresponding relationship as 3
4
 × 8. Connect to the idea of 

multiplication by reciprocal explored when dividing a whole number by a fraction. 

4. Test this idea with other fractional divisors (for example, what happens when a fraction is shared 
further with 1

2
, 1
3
, 1
4
 and so on). See if students can identify a general rule that dividing a fraction 

by a unit fraction is the same as multiplying by that fraction’s reciprocal. Explore with students 
what happens when finding what part of a larger fraction there is in a smaller fraction. They 
should find they end up with a smaller number or a fraction as an answer. For example, there is 
half of a half in a quarter; there are two quarters in one half. 

 Resource Resource 6.3.3 How many fractions in a fraction? 

 

Mathematics 

 

Language/symbols and practice 

Dividing fractions other than unit fractions 

Once students have mastered the basics of multiplication by reciprocal, 
practice examples like 2

3
 ÷ 3

4
. Start from student understanding of the 

reciprocal of whole numbers and unit fractions, for example 2 × 1
2

 =  1. Also 

use area models to explore 3
5

× 5
3
, 3
4

× 4
3
, and so on to see what the result is. 

They should find that each of these examples multiply to 1.  

Use area models to explore how many 3
4
 sized pieces are in 2

3
 to test if the rule generated for unit 

fractions extends to non-unit fractions.  This means 2
3

÷ 3
4

 = 2
3

× 4
3

 = 8
9
.  

 

 

 

 

 Resource Resource 6.3.4 Dividing fractions other than unit fractions 

   

1 whole        +   1
3
  = 4

3
 

       

       3
4
          of   4

3
  = 1 

     

2
3
   

  
     
     
     

3
4
  sized piece has 9 parts 2

3
  sized piece only has 8 parts 

So there are 8
9
 of a 3

4
  sized piece in 2

3
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Volume model 

Explore sharing a volume model filling jugs or cups from a bucket. Act out the example from reality to 
see how many of various sized containers can be filled from a standard container (e.g., use a 1 L jug 
to fill 4 cup measures, 8 smaller cups, 2 larger cups and so on). This is a smaller version of the 
problem, My bucket holds 1

4
 L. How many times will I need to fill my bucket to fill a tank that holds 

35 1
2
  litres of water? This is 35 1

2
÷ 1

4
.  

Encourage students to represent with drawings if necessary. If students are struggling with this idea, 
discuss the reality they have experienced. They should intuitively recognise that they will need to fill 
more of the smaller buckets than larger buckets. For example, 8 × 1

8
 L buckets to make 1 L, and the 

number of buckets needed to fill 35 1
2
 L can be found by completing the computation 35 1

2
 ×  8 

(which is multiplication by reciprocal). Using a contextual problem helps reinforce the connection to 
multiplying by inverse when dividing fractions.  

 Resource Resource 6.3.5 Exploring fractions using volume models 

 

Reflection 

 
Check the idea  

There are many connections between common fraction operations including area or number line 
representations, inverse operations and reciprocal (or inverse) fractions. Construction of Thinkboards 
that depict equivalent fraction operations connecting multiplication and division to story problems 
are beneficial. For example:  

 

 

Extend the idea 

Change Parameters 

Examples given so far have focused on division by common proper fractions. See if students can 
identify strategies that will allow them to divide by mixed numbers for consistent results. Note: 
Students may work with part-whole thinking or by converting the mixed number to an improper 
fraction and then working as for common fractions.  

Generalise 

See if students can generalise from division of fractions to manipulating and simplifying algebraic 
formula that include division of fractions. For example, 𝑎

𝑏
 ÷  𝑐

𝑏
 =  𝑎

𝑏
 × 𝑏

𝑐
 =  𝑎

𝑐
 

  

 

How many pieces of 
ribbon that are 2

5
  of a 

metre long can I cut 
from 2 m of ribbon?  

2 ÷  2
5
 = ? 

2 ×  5
2
 = 10

2
 = 5 pieces 

2
5

 × ? =  2 

0 2

 

2
5
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 

 

 



Name:              Date:    
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Can you do this? #4 

1. Write the number words as decimal numerals for each sentence: 

(a) To make Asian noodle salad, half a wombok is needed.    
Obj. 

6.4.4 
a) □ 

(b) The probability of rolling a 6 on a die is one tenth and sixty-seven 
thousandths.            

Obj. 
6.4.1 
b) □ 

2. Write the numerals in number words for each sentence: 

(a) The table was 4.25 m long.          

              

Obj. 
6.4.1 
a)i. □ 

ii. □ 
iii. □ 

(b) The distance to the shops is 12.35 km.       

              

Obj. 
6.4.1 

b)i. □ 
ii. □ 

iii. □ 

3. Rank the following numbers on a number line:   

17.6,   8.1,   4.7,   12.5,   18.9,   0.3,   14.6,   7.3 

 

Obj. 
6.4.2 

□□ 
□□ 
□□ 
□□ 

4. Rank the following numbers on a number line:   

⁻5.6,   3.1,   ⁻2.7,   2.5,   7.9,   ⁻0.3,   0.6,   ⁻4.3 

 

Obj. 
6.4.2 

□□ 
□□ 
□□ 
□□ 

5. Are the following numbers rational or irrational? 

(a) 1.36����   □ rational  □ irrational 

(b) 0.75   □ rational  □ irrational 

(c) 1.024831����������  □ rational  □ irrational 

(d) π    □ rational  □ irrational 

Obj. 
6.4.6 
a) □ 
b) □ 
c) □ 
d) □ 

10 20 0  

0 10 ⁻10 
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6. Are the following decimals terminating or recurring? 

(a) 1.36����   □ terminating  □ recurring 

(b) 0.75   □ terminating  □ recurring 

(c) 1.024831����������  □ terminating  □ recurring 

(d) 0.543 278  □ terminating  □ recurring 

Obj. 
6.4.5 
a) □ 
b) □ 
c) □ 
d) □ 

7. Round these numbers to three decimal places: 

(a) 3.14159           (b) 0.16161616      
Obj. 

6.4.3 
a) □ 
b) □ 

8. Write these common fractions as decimal fractions: 

(a) 1
4
       (b) 2

3
       

(c) 12
8

       (d) 6
12

      

Obj. 
6.4.4 
a) □ 
b) □ 
c) □ 
d) □ 

9. Write these decimal fractions as common fractions: 

(a) 0.35      (b) 1.43      

(c) 2.06      (d) 0.001      

Obj. 
6.4.1 
a) □ 
b) □ 
c) □ 
d) □ 

10. Use 10×10 grids to show: 

(a) 25 hundredths 

          

          

          

          

          

          

          

          

          

          
 

(b) 5 tenths and 6 hundredths 

          

          

          

          

          

          

          

          

          

          
 

 

Obj. 
6.4.1 
a) □ 
b) □ 
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Cycle 4: Representation of Fractions as Decimals 

Overview 

 Big Idea 

This cycle connects common fraction representations to their decimal fraction counterparts starting 
with tenths, hundredths and thousandths, before extending to other common fractions and their 
conversion to decimal fractions. This exploration will include terminating and recurring decimals and 
irrational numbers (specifically π). 

 Objectives 

By the end of this cycle, students should be able to: 

6.4.1 Represent common fractions of tenths, hundredths and beyond using decimal notation. 
[5NA104]  

6.4.2 Compare, order and represent decimals on a number line. [5NA105] 

6.4.3 Round decimals to a specified number of decimal places. [7NA156] 

6.4.4 Represent common fractions other than tenths, hundredths and so on as decimals. [8NA184] 

6.4.5 Identify terminating and recurring decimals. [8NA184] 

6.4.6 Identify irrational numbers including π. [8NA186] 

 Conceptual Links 

Decimal fraction representations of quantities connect and extend place value understanding 
developed in Unit 01.  

Representation of fractional quantities as decimals is commonly used when dealing with money, 
metric measures and later for conversion to and from percentages. 

 Materials 

For Cycle 4 you may need: 

• chocolate cake game recording and working 
sheet 

• equivalent fraction (cover the board game) 

• equivalent fraction Connect 5 

• fraction cards 

• fraction mats 

• equivalent representation (cover the board 
game) 

• equivalent representation Connect 5 

• fractions cards (happy families / go fish / 
snap / concentration / memory)  

• fraction strips 

• calculators 
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 Key Language 

Tenths, hundredths, thousandths, decimal fractions, divide, denominator, equivalent fractions, 
repeating decimals, recurring decimals, terminating decimals, irrational numbers, pi, π, rounding, 
significant figures, significant places, circumference, diameter 

 
Definitions 

Irrational number: a real number that cannot be written as a common fraction. The resulting decimal 
goes on forever without repeating 

Rational numbers: a number that can be written as a common fraction where the numerator and 
denominator are both whole numbers 

Repeating/recurring decimals: a number in which the same sequence of digits repeats indefinitely 

Significant figures/significant places: number of places or digits to round non-terminating decimals 
to. Usually used in measurement contexts where decimals may extend beyond the accurate 
range of the measuring instrument and become irrelevant in practicality. 

Terminating decimals: decimals which do not repeat or have a finite number of digits. All terminating 
decimals can be rewritten as common fractions. 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• What is the denominator? Does that sound like a place value that you know? 

• Can you write that fraction as a decimal? 

• Is the denominator a multiple of ten? 

• If the denominator is not a multiple of ten, how else can we interpret the fraction? 

• What operation do we use on the calculator? 

• Is that decimal terminating – does it end? 

• Can you see a pattern or repeat in the numerals in the decimal? Is it a recurring or repeating 
decimal? 

 

Portfolio Task 

This cycle contributes to sections of the Portfolio Task 06: Calculating Costs that represent fractions 
as decimals. 
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RAMR Cycle 
This RAMR cycle focuses on connecting common fraction and decimal fraction representations of 
parts of a whole and converting between these representations. Exploration of the relationship 
between diameter and perimeter of a circle is included as an introduction to irrational numbers. 

 Reality 

Discuss how fractions are generated and represented in the real world. Connect back to contexts 
explored during Unit 05. Discuss which division/sharing scenarios are usually expressed as fractions 
and which are not. Extend the conversation to mixed numbers (whole numbers and common 
fractions as well as whole numbers and decimal amounts).  

Discuss decimal fractions and how these are represented in the real world. For example, partitioning 
lengths or distances, volume and capacity, money amounts (when do we see money amounts as 
whole numbers and when do we see money amounts as mixed numbers). Is there a connection 
between decimal fractions and common fractions? How do we move between these?  

 Abstraction 

The abstraction sequence for this cycle connects common fraction representations of parts of wholes 
to decimal fraction representations. Once the decimal representation of fractions is established, 
finding equivalent fractions, comparing and ordering fractions, the notion of density, and types of 
decimal numbers (terminating, recurring, irrational) can be developed in the Mathematics phase of 
learning. A suggested sequence of activities is as follows: 

1. Kinaesthetic activity. Find examples of items that come in packets or groups of ten, using 
students’ fingers can be a simple and accessible option. Ask students to hold up 3 fingers. 
Identify what fraction of all their fingers they are holding up ( three out of ten, three tenths, 3

10
). 

2. Represent/model with materials. Use ten unifix cubes or counters to represent ten fingers. 
Separate 3 unifix cubes from the set of ten to represent 3 fingers. Alternatively, use bead strings 
and separate the first 3 beads from the first set of ten. 

3. Connect to language/represent with symbols. Connect the name of the common fraction (three 
tenths) to its place value representation as a decimal part of a unit. 

4. Connect to symbol system. Introduce place value names of decimal numbers. Explore what 
happens to a number’s position on the place value chart when multiplying and dividing by ten. 
Act this out holding number cards on a human place value chart at the front of the room. 
Connect the symbolic representation of the decimal (e.g., 0.3) to the language of three tenths 
and the place on the place value chart. Ensure students have clearly established the quantity 
represented by three tenths. 

 Resource 
Resource 6.4.1 Regrouping and renaming decimals 
Resource 6.4.2 Regrouping and renaming number expander 
Resource 6.4.3 Decimal place value charts  

5. Reinforce counting in symbol system. Use a large number line (masking tape or cotton tape) on 
the floor for students to position decimal fraction and matching common fraction cards. Have 
pictorial representations for students to link to if necessary.  

6. Ask students to practice representing digits on a place value chart for decimals. Ask them to 
write these as a decimal, say the decimal fraction, write them as a common fraction and 
represent them on a number line.   
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7. Repeat Steps 1–6 to establish the size of parts for hundredths. Ten fingers on ten students can be 
used as a kinaesthetic hundred, one students’ fingers are a tenth of the total, one finger of one 
student is one hundredth of the total. Use bead strings to identify a tenth (one set of coloured 
beads within the whole string) and parts of tenths. When reading decimal number names, group 
the digits to the right of the decimal point as a complete number and name according to the 
smallest place. For example, 2.35 is read as two and thirty-five hundredths; 2.05 is read as two 
and five hundredths. This enables students to focus on the value of the decimal fraction rather 
than the digit value of each place. 

8. Repeat Steps 1–6 to establish the size of parts for thousandths. Lay ten bead strings together so 
that one bead string is now one tenth, one set of coloured beads is one hundredth, and a single 
bead is one thousandth. When reading decimal number names, group the digits to the right of 
the decimal point as a complete number and name according to the smallest place. For example, 
2.355 is read as two and three hundred, fifty-five thousandths; 2.055 is read as two and fifty-five 
thousandths; 2.005 is read as two and five thousandths. This enables students to focus on the 
value of the decimal fraction rather than the digit value of each place. 

 Mathematics 

 Language/symbols and practice 

Flexible conversion between representations of tenths, hundredths, thousandths 

Practise flexibly moving from common fraction, mixed number and improper fraction to decimal 
representations. Fraction and decimal matching and memory games may be useful here. 

 Resource Resource 6.4.4 Fraction and decimal representation games 

Using a calculator to create decimal fractions 

Remind students of the Chocolate Cake Game from Unit 05. Use Resource 6.1.5 Chocolate cake game 
with decimals to engage students with practice converting common fractions to decimals. Act out the 
first six seatings for the game and record the resulting common fractions. Discuss the meaning of 
each fraction as the number of cakes shared by a number of people. Connect this idea to division and 
enter into a calculator. For example, 2 cakes shared with 5 people would be 2 ÷ 5, pressing the = key 
will give a fraction of 0.4. Ensure students are able to name the fraction and check that four tenths is 
an equivalent fraction of two fifths. Use calculators to divide the cakes as decimal fractions for other 
seatings in the game. Read and write these fractions.  

 Resource Resource 6.4.5 Chocolate cake game with decimals 

Comparing and ordering decimal fractions 

Extending from students’ experience with placing decimal fractions on the number line, connect to 
comparing and ordering of decimal fractions. Ensure students understand they need to compare like 
place values starting with the largest place so that 2.2 is larger than 2.1; 2.20 is smaller than 2.21; 
2.200 is smaller than 2.201 and 2.211.  

Use the set of fractions from the previous iteration of the Chocolate Cake Game to compare and 
order fractions on a dual number line with common fractions above the line and decimal fractions 
below the line. 
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 Connections 

Role of zero 

Discuss the use of zero to fill empty place values and where it makes no difference to the value of a 
number. For example, in the number 2.35, placing zeros before the 2 will not change the value of the 
number and placing zeros after the 5 will not change the value of the number, because these 
placings do not alter the place of any of the digits within the number. Placing zeros anywhere 
between these digits will change the value of the number because digits will move between places. 

Density with fractions 

Reinforce density with decimal fractions by using a long length of rope (or a long line on the 
whiteboard or floor). Label each end with a whole number (e.g., 3 and 4). Find the halfway point on 
the string or line and mark, identify the fraction (e.g., 3.5). Place the rest of the tenths along the line. 
Choose one section to continue partitioning and labelling fractions to include hundredths. Discuss 
with students where thousandths would fit. Repeat the process with successively smaller decimal 
place values to consolidate students’ understanding that there are an infinite number of fractions 
between any two locations on a line (although they do become smaller than human perception).  

Smaller decimal place value names 

Discuss smaller place value names than thousandths. Explore the symmetrical nature of place value 
names so that students are able to read and name smaller fractions. This can be acted out using 
place name cards along a human place value chart. Stand students in a line from millions down to 
ones. Put a hat on the student holding the ones card. Stand additional students with tenths, 
hundredths and thousandths cards. Have students with ten and tenths cards take a step forward; 
students with hundred and hundredths cards take two steps forward; and students with thousands 
and thousandths cards take three steps forwards. Ask students to predict what the matching decimal 
place will be for ten thousands, give this card to a student and have this pair take four steps forward. 
Repeat with hundred thousands, hundred thousandths, and millions and millionths. Ensure students 
notice the symmetry in the place names pivoting around the ones place (not the decimal). Reinforce 
with students that the pattern pivots around the ones and the role of the decimal place in always 
being positioned to the right of the ones place to separate whole numbers from decimal fractions. 

 Resource Resource 6.4.6 Symmetry of decimal place value 

Classifying decimal fractions 

While generating fractions in the Chocolate Cake Game, students may have noticed that some 
fractions fill the screen of the calculator and others do not. Create a poster with headings of 
Terminating Decimals, Repeating Decimals and Irrational Numbers. Gather the set of fractions 
generated during the game and sort out fractions that terminate such as (quarters, eighths, halves, 
and so on). See if students can suggest other fractions that will terminate, check with a calculator and 
add to the grouping. Work backwards from terminating decimals to their lowest common 
denominator common fraction (e.g., 0.356 =  356

1000
=  178

500
=  89

250
). 

Follow up with repeating decimals such as 0.3�  (1
3
), 0.285714���������� (2

7
), 0.83�  (5

6
). Ensure that students can 

identify the repeating part of the decimal. Students should be able to generate other repeating 
decimals without using too much imagination (e.g., 0.1�, 0.2�, 0.4�, 0.5�, and so on). Introduce students 
to the other names sometimes used for these decimals (recurring and infinitely recurring). Explore 
how to convert these decimals to common fractions using algebra. 

 Resource Resource 6.4.7 Terminating and repeating decimals 
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Irrational numbers – rounding 

Rounding. Students should have encountered a range of decimals that are neither terminating nor 
repeating decimals. Discuss with students how to round these numbers to a number of significant 
places. Discuss the meaning of significant as enough to make a difference. Discuss where accurate 
measures may be needed and where they are less important. For example, most measurements are 
accurate enough to millimetres. Think of examples where smaller measures are needed. Cary and 
Michael Huang’s: The Scale of the Universe can be useful to explore very small and very large 
measures http://htwins.net/scale2/ (very slow to load). 

Discuss with students how to terminate an irrational number to significant places. Discuss rounding 
numbers (students should be familiar with this idea from shopping). Explore rounding 
kinaesthetically using a number track on the floor. Place ten at one end of the track and twenty at 
the other end. Discuss with students where to round up to twenty and where to round down to ten. 
Explore with other values. Ensure students also experience determining what numbers to place at 
each end of the track in order to round up or down. Use a number line to reinforce more than 
halfway and less than halfway as criteria for rounding. Reinforce and apply to decimal numbers. 

 Reflection 

 Check the idea  

Represent fractions as common fractions, pictures, and decimals. Demonstrate as many different 
combinations of representations as possible. Identify families of common fractions that result in the 
same decimal. 

 Apply the idea 

Explore decimal fraction operations and rounding using money transactions. For example, when 
paying cash, money amounts are rounded to nearest 5c or 10c; petrol prices are advertised as cents 
per litre with a decimal fraction resulting in further rounding to the nearest cent while also 
converting from cents to dollars. For example,  

• Generate lists of items for purchase in a shop with decimal fraction values for students to add. 
Alternatively, use online shopping catalogues for students to select items from. Add the lists of 
items and determine what the total cost will be in dollars rounded to the nearest 5c or 10c. 

• Explore petrol pricings. Convert these from cents to dollars. Calculate what 10L or 20L of fuel will 
cost in total (extended tens facts and place value can be consolidated here). Round this amount 
to two decimal places for keycard payment. Round this amount further to 5c or 10c for cash 
purchases. This may be extended to 50L or 100L where larger capacity vehicles are relevant for 
students. 

 Extend the idea 

Extend students’ work on repeating decimals to examples where there is more than a 2 digit repeat. 
These examples need to use a different multiplier depending on the length of the repeating part. 
Give students a few examples with 2 digit repeats, 3 digit repeats and 4 digit repeats.  

 Resource Resource 6.4.8 Terminating and repeating decimals extension 

  

http://htwins.net/scale2/
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 
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Unit 06 Investigation: Irrational Numbers 

Exploring pi 

Using measurement as a context, explore finding the distance around a circle (or circumference). Use 
a variety of circles to compare the diameters with the corresponding circumferences. Measure these 
as accurately as possible to determine how many diameters fit around the circumference (express as 
a fraction 𝑐𝑐𝑐𝑐𝑐𝑚𝑐𝑐𝑐𝑐𝑛𝑐𝑐

𝑑𝑐𝑎𝑚𝑐𝑑𝑐𝑐
). Compare fractions to approximate a constant value for pi (π). Resource 

6.4.8 Circumference of circles has guidelines for the activity to assist with scaffolding student 
understanding.  

Discuss how approximations for pi are only as accurate as the measuring implements usedto 
determine circumference and diameter measures. 

Classify pi as an irrational number on the classroom chart. Discuss commonly used values for pi (e.g., 
3.14, 3.14159, 22

7
, and so on). 

 Resource Resource Investigation Unit 06 Circumference of circles 

 

Applications for pi 

Find the best diameter to use for a trundle wheel to measure 1 m.  

Determine the distance travelled with one turn of different sized bicycle wheels (e.g., diameters of 
700 mm, 559 mm, 406 mm).  

What size bicycle wheel is better for long distances (which one travels furthest for each turn of the 
wheel)? 

Original bicycles were not geared. Each time the pedal crank completed a full turn, the wheel only 
travelled the same circumference as the pedal crank. (Google images: Penny farthing bike). 

Explore the circumference of pedal crank turns compared to full wheel turns on bicycles. How many 
turns of the pedal crank will it take for the wheel to complete a full turn (assuming there is no 
gearing)? 

Is there a maximum practical length for a pedal crank? Ask students to stand on one foot against a 
wall with the other foot raised so that the upper part of the leg is roughly parallel to the floor. 
Measure the distance from the base of the foot to the floor. How does this measurement relate to 
the measurement of a pedal crank?  

Look at some pictures of penny farthing bikes. Some of these appear to have pedal cranks that are 
half the radius of the wheel, some seem to be about a third of the radius of the wheel and some are 
about a quarter of the radius of the wheel. What will these differences mean for the number of pedal 
turns to make a full turn of the wheel? 

 

 





Name:              Date:    
 

XLR8-ARC Booklets © QUT YuMi Deadly Centre 2016 Unit 06: Cycle 5: Can you do this? 

Can you do this? #5 

1. Complete the patterns and write the change rule for each pattern.  

(a) 1.04, 1.24, 1.44, _____, _____,  _____  The change is _____ 

 

(b) 0.3, 0.35, 0.4, _____, _____, _____  The change is _____ 

 

(c) 0.5, 0.48, 0.46, _____, _____, _____  The change is _____ 

 

(d) 1.3, 1.27, 1.24, _____, _____, _____  The change is _____ 

Obj. 
6.5.1 

a)□□□ 
□□ 

b)□□□ 
□□ 

c)□□□ 
□□ 

d)□□□ 
□□ 

2. Solve the equations: 

(a) 0.34 +  0.54 =   
Obj. 

6.5.2 
a) □ 

(b) 2.45 − 0.29 =  
 

Obj. 
6.5.3 
b) □ 

(c) 15.8 −  4.9 = Obj. 
6.5.3 
c) □ 

 

(d) 0.305 + 0.35 =  Obj. 
6.5.2 
d) □ 

3. Write the equations and solve the problems: 

(a) The table was 4.25m long. A tablecloth needs to hang 0.5m over 
each end.    How long does the tablecloth need to be?  

 

 

Obj. 
6.5.2 
a)i □ 

ii □ 
iii □ 

(b) Jack has to walk 12.35km to the shops from home. The swimming 
pool is 15km away from home. How much further away from 
home is the swimming pool? 

Obj. 
6.5.3 
b)i □ 

ii □ 
iii □ 
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Cycle 5: Additive Operations with Decimals 

Overview 

 Big Idea 

This cycle extends addition and subtraction concepts and processes explored with whole numbers 
and fractions to addition and subtraction of decimals. Decimal fraction operations can be explored as 
an extension of common fractions with denominators that are powers of ten. Decimal fractions can 
also be explored as an extension and reinforcement of place value additive operation techniques 
using previously explored whole number strategies.  

 Objectives 

By the end of this cycle, students should be able to: 

6.5.1 Describe, continue and create patterns with decimals resulting from addition and subtraction. 
[5NA107] 

6.5.2 Add decimals. [6NA128] 

6.5.3 Subtract decimals. [6NA128] 

6.5.4 Use estimation and rounding to check reasonableness of answers. [6NA128] 

 Conceptual Links 

Decimal fraction operations rely on students’ previous development of place value and operations 
with whole numbers developed in Unit 01, Unit 02 and Unit 03.  

Skills developed in additive operations with decimal fractions are further used in contexts that 
involve money/finance or budgeting, measurement contexts where values are added (such as 
perimeter), complementary angles in geometry, and statistics and probability calculations. 

 Materials 

For Cycle 5 you may need: 

• PVC per student 

• PV cards set (math mat and holding) 

• math mat 

• fraction sticks  

• Part – Whole chart (similar to PVC) 

• Connect 5/cover the board games 

• shopping catalogues (or access to online) 

• A7 digit cards per student 

• A5 digit cards 

• calculator per student 

• fraction base boards 

• overlays 

• thinkboard 
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 Key Language 

Equivalent fractions, place value, tenths, hundredths, thousandths, decimal fraction, decimal places 

 

 
Definitions 

Decimal place: place values smaller than a whole unit. For example, tenths, hundredths, thousandths 

 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• What values are you adding/subtracting? 

• What place values are in each number? 

• Are you adding/subtracting the same place values? 

• Will it change the value of the number if you put a zero in the place after the last decimal place 
value (to the right of the last digit after the decimal point)? 

• Will it change the value of the number if you put a zero in the place before the first whole 
number place value (to the left of the first digit in the number before the decimal point)? 

 

 

Portfolio Task 

The student portfolio task may be given to students as an independent task to complete in class, or 
as a teaching/application activity. This cycle contributes to sections of the task that involve additive 
operations with decimals like adding or subtracting money amounts and metric measures. 
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RAMR Cycle 
The focus of this cycle is additive operations with decimal fractions. Additive operations with decimal 
fractions rely on place value understanding so that like places are added or subtracted. Area and 
number line models are used to model additive fraction operations. Students should continue 
interpreting story contexts that use fractional values and broaden their vocabulary for creating their 
own stories to suit equations. 

 Reality 

Real contexts involving joining or separating are ideal for working with decimal fractions. Reinforce 
with students that fractions are the same size pieces of a whole. Some contexts are naturally found 
as decimals, for example, any contexts involving money, metric measure (length, capacity, mass). 
These measures can be joined or separated when: planning a trip to several places, totalling a 
shopping list or subtracting discounts, adding dry ingredients to a bowl or adding liquids to a mixture 
when cooking, and when spraying chemicals or mixing fuel. These contexts can be used within the 
Mathematics phase to explore additive decimal operations. 

 Abstraction 

The abstraction sequence for this cycle starts from students’ experience of additive operations with 
whole numbers to include calculations with decimal place value quantities. A suggested sequence of 
activities is as follows: 

1. Kinaesthetic activity. Start by acting out a problem using a number ladder or line on the floor. 
This can depict as distances along a tape for an authentic context. For example, fabric 0.3 m wide 
is laid edge to edge with a piece of fabric 0.6 m wide; how much length will it cover? If I have 
covered 0.9m and only need to cover 0.7 m, what width do I need to cut off? However, few tape 
measures are constructed with decimal numbers on them in a way that does not confuse 
students. A 5 m length of wide bias tape with markings (Nikko pen is great) that correspond to 
0.1 m and so on can be more useful and will roll up again ready for next usage. This could also be 
created with 0 in the middle so that negative numbers are included on the other half. 
Alternatively, if the 100 m running track is considered as a full length, decimal addition and 
subtraction could be considered with how far up or down the track a person runs if the length is 
broken into equal parts for 10 runners when practising baton changes. 

2. Represent/model with materials. Continue to model addition and subtraction stories with drawn 
representations (number lines). Ensure that students recognise that inverse operation from 
whole numbers still works with decimal numbers. Ensure when students are working with 
subtraction of decimal numbers or negative decimal numbers, that they interpret the placement 
of the numbers correctly. For example, if placing –3.5, students need to locate –3, then continue 
to the left to place –3.5. 

3. Represent with symbols. Continue to build student vocabulary and flexibility with worded 
problems by modelling a range of problem situations using a wide range of addition and 
subtraction language. Record these as equations to be solved. Continue to highlight part-part-
total with addition and subtraction stories and connect to the triads to reinforce student 
connections to interpreting and creating real-world problems. Ensure that students generalise 
that in additive problems, when given both the parts, students can find the total if they add the 
parts together. Meanwhile, if students know the total and one part, then they have to find the 
other part and need to subtract. 
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4. Reinforce place value calculation strategies. Encourage students to apply their previous 
strategies with whole number operations to decimal place values. Ensure that students 
understand that decimal place values work the same way as whole number place values even 
though they represent parts of the whole. 

Use relevant story contexts where decimal fractions are normally encountered like money and metric 
measures. Encourage students to construct their own problem situations. Addition and subtraction 
of decimal numbers can be thought of as operations with the equivalent common fractions or as an 
extension of whole-number operations using place value. These ideas are demonstrated further in 
Resource 6.5.1 Additive operations with decimal fractions. 

 Resource 
Resource 6.5.1 Additive operations with decimal fractions 
Resource 6.5.2 Place value charts 

 Mathematics 

 Language/symbols and practice 

Use relevant story contexts where decimal fractions are normally encountered like money and metric 
measures. Encourage students to construct their own problem situations. Addition and subtraction 
of decimal numbers can be thought of as operations with the equivalent common fractions or as an 
extension of whole-number operations using place value.  

Resource 6.5.3 Decimats game is a game context that connects area models of decimal fractions and 
their common fraction and decimal fraction representations while also providing opportunities to 
practice addition of decimal fractions based on place value amounts. 

 Connections 

Properties of numbers and operations 

Explore properties of additive operations encountered with whole numbers such as commutativity, 
associativity, inverse operations, part-part-total, and triadic relationships between parts of a story 
problem. Ensure that students can see that all these properties apply to common fractions and 
decimal fractions as well as whole numbers. 

Problem construction and interpretation 

Practice writing equations with fractions from stories and writing stories from equations for additive 
operations. Focus on the parts and totals within the equations and ensure the stories have suitable 
unknown parts or totals for the operation the number sentence suggests. 

Try to move students to understanding that a pronumeral can be any symbol or letter as it 
represents the unknown quantity of a unit not the unit itself. For example, ‘s’ does not need to stand 
for spent, socks, shoes, sandals, or seagulls. The symbol can represent any quantity of these things, 
but also displacement, distance, dogs, cats, fish, … and so on. Discuss which of these items make 
sense as fractions and which do not (for example, 0.5 of a seagull is a little gruesome but 0.5 m long 
plank of wood makes sense).  

  

 Resource 
Resource 6.5.3  Decimats game 
Resource 6.5.4 Virtual Decimats game 
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Broaden students’ understanding to include the variety of contexts that any given number sentence 
could represent. For example, 0.5 + 0.3 = s could represent stories like: 

• I measured 0.5 m along the wall and then another 0.3 m; what was the distance along the wall 
altogether? 

• I walked 0.5 km from home and then 0.3 km back; how far did I walk? 

• There was 0.5 kg of flour in the packet and I added another 0.3 kg; how much flour did I have? 

• I bought a freddo frog for $0.50 and a jelly snake for $0.30; how much did I spend? 

 Reflection 

 Check the idea  

Return to Thinkboards or concept maps so students can generate and connect fraction 
representations and additive strategies. 

Use Decimats game to check students’ abilities to understand and add decimal place values. 

Challenge students to find decimal combinations that add to 1 whole, 2 wholes, and so on. Find 
fraction combinations that can be subtracted from 3 to get to a half. 

 Apply the idea 

Use a variety of shopping catalogues or grocery shopping online sites so that students can engage 
with monetary values that are current and real to practise addition and subtraction with decimal 
fractions.  

 Extend the idea 

 Directed decimal 

As for whole numbers, directed decimals represent decimals with both quantity and direction. The 
directions are opposites and described as either positive or negative. An example of negative 
decimals can be with temperature where the temperature drops whole and decimal degrees below 
zero.  

As with whole numbers, directed numbers are opposite to the corresponding positive decimal. It is 
important to make the distinction between negative numbers and the operation of subtraction. For 
example, the number opposite 0.7 is negative 0.7 and is written as −0.7. A number line is an effective 
tool for demonstrating how these numbers are opposites. The numbers are the same distance or the 
same number of jumps in each direction from zero.  

 
  

-0.7    -0.6      -0.5      -0.4     -0.3      -0.2     -0.1        0         0.1       0.2       0.3       0.4       0.5      0.6       0.7 
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There is a potential difficulty with horizontal number lines if they become 
confused with place value charts. It is useful to show the diagram on the 
right. Students sometimes confuse place value with directed number. 
Meanwhile, some students start to see decimals as similar to negative 
numbers and feel that negative numbers start after the ones instead of after 
zero.  

If students are displaying this tendency and the diagram on the right does 
not help, it may be beneficial to return to concrete paper folding activities to 
show that amounts less than one are still positive amounts less than 1 and 
greater than 0. 

Using profit and loss or income and expense contexts for positive and 
negative money amounts may also be useful if this context was successful 
when students investigated whole numbers. 

  

6 

5 

4 

3 

2 

1 
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-1 

-2 

-3 

-4 

-5 

-6 
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6 
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 

 



Name:              Date:    
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Can you do this? #6 

1. Solve the equations: 

(a) 1.57 × 12 =   
Obj. 

6.6.1 
a) □ 

(b) 0.3 ÷ 0.5 =   

Obj. 
6.6.5 
b) □ 

2. Write the equations and solve the problems: 

(a) The whiteboard is 2.4m long. What is the measurement to mark 
halfway along the board? 

Obj. 
6.6.2 
a)i □ 

ii □ 
iii □ 

(b) A wall is 5.4m long. Nine plaster sheets are covering the wall. How 
wide is each sheet of plaster? 

 

Obj. 
6.6.4 
b)i □ 

ii □ 
iii □ 

3. A room is 3m wide and 4m long.  
Square floor tiles are 0.5m across. 

(a) How many tiles will fit across the room? 

 
 
 

(b) How many tiles will fit along the room? 

 

Obj. 
6.6.3 
a)i □ 

ii □ 
iii □ 

b)i □ 
ii □ 

iii □ 

Tile 

0.5m 

Room 

 

          

4m 

 

3m 
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4. Jellybeans in bulk cost $7.50 for 1000 g. 

(a) What fraction of 1000 g is 350 g? 

 

 

 

 

(b)  If you buy 350 g of jellybeans, how much will they cost? 

 

 

 

 

Obj. 
6.6.6 
a) □ 

b)i □ 
ii □ 

iii □ 

5. Another market sells jellybeans in 250g bags for $1.80. 

(a) What fraction of 1000 g is 250 g? 

 

 

 

 

(b) How much will 1000 g of jellybeans cost from this market? 

 

 

 

 

(c) Is it cheaper to buy 1000 g of jellybeans in bulk or in 250 g bags? 

              

 

Obj. 
6.6.6 
a) □ 

 
b)i □ 

ii □ 
iii □ 
c) □ 
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Cycle 6: Multiplicative Operations with Decimals 

Overview 

 Big Idea 

This cycle develops strategies for multiplicative operations with decimals by connecting 
multiplication concepts and processes with fraction concepts. The most accessible meanings of 
multiplicative operations for decimals are repeated addition/subtraction and change. Area and 
number line models can represent problems and assist thinking. Decimal fraction operations can be 
explored as an extension of common fraction operations with denominators that are multiples of ten, 
and as an extension and reinforcement of place value multiplicative operation techniques and strategies.  

Using an array or area model, multiplicative operations with decimal fractions are relatively 
straightforward as they use extended tens facts strategies or may be treated in parts as for whole 
number operations. Conceptual understanding needs to be developed that tenths × tenths (or tenths 
of tenths) are hundredths, tenths of hundredths gives thousandths and so on. Base boards and 
overlays that link tenths to hundredths are useful here. Careful connection to language and number 
names is also necessary to connect to place value understandings. 

 Objectives 

By the end of this cycle, students should be able to: 

6.6.1 Multiply decimals by whole numbers. [6NA129] 

6.6.2 Multiply fractions and decimals. [7NA154] 

6.6.3 Find how many of a decimal quantity is in a whole number. [7NA154] 

6.6.4 Divide decimals by whole numbers. [7NA154] 

6.6.5 Divide decimals by decimal quantities. [7NA154] 

6.6.6 Investigate and calculate ‘best buys’. [7NA174] 

 Conceptual Links 

Decimal fraction operations rely on students’ previous development of place value and operations 
with whole numbers developed in Unit 01, Unit 02 and Unit 03.  

This cycle links to multiplicative operations with whole numbers and builds initial skills in 
multiplicative operations with decimals. It provides the skills necessary to work with percentage 
problems, engage with financial mathematics, multiplicative relationships in measurement, statistics 
and probability, and algebraic applications of fractions and decimals.  

 Materials 

For Cycle 6 you may need: 

• PVC per student 
• shopping catalogues (may be online) 
• calculators 

• hundredths grids 
• fraction baseboards and overlays 
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 Key Language 

Multiply, fraction of a fraction, change, how many fractions in, how many shares of, decimal fraction, 
tenths, hundredths, thousandths, dividend, divisor, quotient 

 
Definitions 

Dividend: total quantity to be shared or divided 

Divisor: the number of shares to break the total quantity into (partitioning: size of share unknown) or 
the size of each share to be created (quotitioning: number of shares unkown). 

Quotient: the size of each share to be created (partitioning) or the number of shares to be created 
(quotitioning) 

 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• Are you finding a fraction of a fraction or how many pieces in? 

• Do you need to multiply or divide? 

 

Portfolio Task 

This cycle contributes to sections of the Portfolio Task: Calculating Costs that involve multiplicative 
operations with decimals like finding multiples of money amounts and metric measures. 
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RAMR Cycle 

 Reality 

Shopping contexts are ideal for engaging students using catalogues for prices or online shopping 
catalogues to plan and work out the total cost of a shopping list with multiples of items. Where items 
are available singly or in multiple lots (e.g., single cans drink and boxes of 6 cans, twin packs and four 
packs of jelly), there are rich opportunities to compare value for money decisions. Similarly, division 
may be used to determine how many of a given item may be purchased with a set amount of money, 
and to determine unit cost or pricing for best buys. This is an appropriate opportunity to introduce 
and explore the language of “per” and its meaning as “for each”. 

Other appropriate contexts are measurement of mass, capacity or length where decimal amounts of 
kilograms, litres, metres, or kilometres can be explored as multiples or partitioned. Examples might 
include: a single seat is 0.48 m wide, how wide will a row of six occupy; a bag of rice is 1.5 kg and 12 
of these fit in a shopping bag, how heavy will the shopping bag be to carry; we are using 1.5 L bottles 
of soft drink and juice to make fruit punch, if there is a bottle of lemonade, a bottle of ginger ale and 
a bottle of fruit juice, what quantity of fruit punch will be the total?  

Encourage students to construct and interpret story contexts and to create equations with decimal 
values to solve. This will also broaden students’ vocabulary. Ensure that question patterns involve a 
range of formats so that the product is not always the last or first quantity stated. 

 Abstraction 

The abstraction sequence for this cycle takes students from physical experiences of multiples of 
decimal fractions to develop strategies for solving these types of problems using language and 
symbols. A suggested sequence of activities is as follows: 

Multiplication of decimals 

1. Kinaesthetic activity. Experiences from multiplication of common fractions may be extended here 
and connected to common fractions where the denominator is a multiple of ten. Explore and 
consolidate that a fraction of a fraction is a smaller fraction. As for Cycle 4, it can be useful to 
connect to ten students holding up ten fingers. One student has 0.1 of the fingers held up, one 
finger on this student is 0.1 × 0.1 of the fingers held up which is 0.01 (one hundredth).  

2. Connect to language and symbols. Reinforce the connection between language used with 
multiple of tens common fractions and decimal place values. 

3. Model with materials. Gradually increase the complexity of examples to abstract decimal × 
decimal rules so that conceptual understanding and number sense are reinforced along with 
technique. Start with whole × decimal examples, extend to decimal × decimal examples. 

4. Connect, reinforce and consolidate. Use calculator patterns to verify place value position and to 
assist students to generalise a way of working with decimal × decimal examples is consistent. 
Resource 6.6.4 Decimal fractions “of” or “by” decimal fractions explains this further. 

 Resource 
Resource 6.6.1 Tenths and hundredths base boards and overlays 
Resource 6.6.2 Tenths and hundredths base boards and overlays PowerPoint 
Resource 6.6.3 Multiples of decimal fractions 
Resource 6.6.4 Decimal fractions “of” or “by” decimal fractions  
Resource 6.6.5 Multiplication of fractions games 
Resource 6.6.6 Multiplication of fractions games PowerPoint 
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Division of or by decimals 

Conceptual understanding needs to be reinforced that division is finding how many in a group or how 
many groups – this does not change with decimals. What is different is the size of the pieces that 
make up the group. If the divisor is a whole number, division can be an extension of whole-number 
division.  

4. Kinaesthetic activity. As for division of common fractions, contexts can include volume models, 
area models and length models where metric measure is used. For example, capacity, area 
covered, and distances. An ICT based activity could involve the use of distances segmented 
equally, for example: 

Six friends drive to Sydney from Brisbane. Use Google Maps to find this distance (920.7 km).  

If each friend drives an equal amount of kilometres, how far will each friend drive? 

5. Model with materials and connect to language and symbols. Model the previous activity with 
materials (number line model will show the problem best but area model for place value will 
show the partitionin best). This could first be demonstrated using a number line, showing the 6 
equal jumps. Then question the students asking how each jump can be calculated. However, to 
model the process for calculation, it is necessary to break the number into place value segments 
for working. 

Note that the following language should be used alongside the written algorithm so that students 
may understand the sharing process and the regrouping. 

The whole distance is 920.7 km. This is 9 hundreds, 2 tens, 0 ones, 7 tenths. Each of these places 
is shared by or divided by 6 in turn.  

For this example, out of 9 hundreds, 6 people travel 1 hundred each, leaving 3 hundreds.  These 
3 hundreds are regrouped as tens to give a total of 32 tens. Out of 32 tens, 6 people travel 5 tens 
each leaving 2 tens. These are regrouped as ones to give 20 ones. Sharing these, each person 
travels 3 ones leaving 2 ones which are regrouped as tenths to give 27 tenths. Each person 
travels 4 tenths and the remaining 3 tenths are regrouped as 30 hundredths of which each 
person travels 5 hundredths.   This means that each individual travels 1 hundred, 5 tens, 3 ones, 
4 tenths and 5 hundredths. Written as a complete digit this becomes 153.45 km each to drive. 

This activity can be repeated with various distances common to the students’ interests.  

 Resource Resource 6.6.7 Whole-part sharing to traditional algorithm 

 Mathematics 

Within the Mathematics phase, it is important to practice problems that involve finding multiples of 
same-size fractions using set (considered in Abstraction), number line and array or area models. 
These are most easily conceptualised as repeated addition. Similarly, decimal fraction of or by a 
decimal fraction problems should be explored using contexts that can be represented using set, 
number line and array or area (explored in Abstraction) models.  

 Connections 

Ensure that generalisations of ways of working to solve multiplicative operations with decimal 
fractions are clearly connected to place value understanding.  
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 Language/symbols and practice 

Calculation when the divisor is a decimal number 

For examples like 0.378 ÷ 0.7, using an extension of whole number techniques requires changing the 
divisor without changing the quotient. There are two related methods of exploring this with students 
which will lead to a similar pattern for working with symbols.  

1. Using reality. Where metric measure reality situations have been used it is possible to consider 
conversion to a smaller unit to change the decimal component of the problem. For example, if 
the problem is to find 0.378 cm ÷ 0.7 cm, then converting to mm it becomes 3.78 ÷ 7. This can be 
done by whole-number methods.  

Note: this method works best when translation to reality is simple. For example 0.21 ÷ 0.07, 
changing it from m to cm changes the example to 21 ÷ 7, making it easy to solve. This is related 
to the number-size compensation principle which may also be used in the same way. 

Discuss with students how this idea works. How are they changing the measures for the division 
to be simpler? Ensure they realise that they are multiplying both the dividend and the divisor by 
the same amount. Test these examples using calculators to allow students to verify that the 
quotients (answers) for each pair of equations remain the same. 

2. Using fraction equivalence. Connect to students’ understanding of fractions as a representation 
of division and finding equivalent fractions. The example 0.378 ÷ 0.7 is the same as fraction 0.378

0.7
, 

multiplying top and bottom by 10, this is equivalent to fraction 3.78
7

 which is the same as 3.78 ÷ 7. 
Again, verify that equations solved this way result in the same outcomes. 

Once the divisor has been converted to a whole number, students can calculate using mental 
computation or pen and paper calculations with a traditional algorithm. Practice division with 
decimals from a range of story contexts as well as writing stories from given equations.  

 Resource Resource 6.6.8 Division of or by decimal fractions 

Both dividend and divisor are decimal numbers  

For examples like 0.378 ÷ 0.7, using an extension of whole number techniques requires changing the 
example without changing the answer. There are four methods to explore which will all lead to a 
similar pattern for working.  

1. Using reality. Where metric measure reality situations have been used it is possible to consider 
conversion to a smaller unit to remove the decimal component of the problem. For example, if 
the problem is to find 0.378 cm ÷ 0.7 cm, then converting to mm it becomes 3.78 ÷ 7. This can be 
done by whole-number methods.  

Note: this method works best when translation to reality is simple. For example 0.21 ÷ 0.07, 
changing it from m to cm changes the example to 21 ÷ 7, which is easy to solve. 

Discuss with students how this idea works. How are they changing the measures for the division 
to be simpler? Ensure they realise that they are multiplying both the dividend and the divisor by 
the same amount. This leads naturally into the next two methods for working. 

2. Using the number-size compensation principle. In this method, 0.7 changes to 7 by × 10, so to 
compensate change 0.378 the same way, that is, 0.378 ÷ 0.7 = 3.78 ÷ 7, and this can be solved by 
whole-number methods. Explore a number of these on calculators to see that the results for 
these equations are the same. 
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3. Using fraction equivalence. Connect to students’ understanding of fractions as division and 
finding equivalent fractions from Unit 05 and Cycle 1.The example 0.378 ÷ 0.7 is the same as 
fraction 0.378

0.7
, multiplying top and bottom by 10, this is equivalent to fraction 3.78

7
 which is the 

same as 3.78 ÷ 7.  

4. Using calculator patterns. Connect place value ideas from working with hundredths grids to 
calculator patterns explored in the number-size compensation principle method. Use the same 
steps as for multiplication of decimals (use calculators to relate 0.345 ÷ 0.5 to 345 ÷ 5 and find 
the pattern, practise the pattern, describe the pattern, and use the pattern). See if students can 
generalise that for decimal division 0.345 ÷ 0.5, we do the whole-number division and subtract 
the decimal place-value positions to find the ones in the whole-number answer. That is, 345 ÷ 5 
is 69 (it is three decimal places subtract one decimal place = two decimal places) so the ones 
place is three from the right and the decimal division answer is 0.69. 

Consolidate and practice 

Practise multiplicative operations within a range of story contexts. Also, practice writing stories from 
given equations. Students need to experience, interpret and construct stories that have one factor or 
the other unknown as well as an unknown product. Ensure that a variety of story patterns are used 
that have the product at points in the story other than the ending. 

Colour by number activities, bingo games where the factors are called for products on the bingo 
board and Connect 5 activities can all be used as ways to consolidate multiplicative operations. 

 Reflection 

 Check the idea  

Use shopping list contexts to generate examples of multiplicative operations with decimal fractions. 
Decimal by decimal contexts may be generated by calculating 1.5 kg prices for fresh fruit and 
vegetables or meat products. There are many connections between common fraction and decimal 
operations including area or number line representation, inverse operations and reciprocal (or 
inverse) fractions. Construction of Thinkboards that depict equivalent fraction and decimal 
operations connecting multiplication and division to story problems will be beneficial. For example:  

 

 
How many pieces of ribbon 
that are 0.4 m long can I cut 
from 2 m of ribbon?  

0.4 ×  ? = 2 m 2 ÷  0.4 = ? pieces 

0 2
 

 

0.4  
0.4  0.8  1.2  1.6  0 2

 

          0.4  0.4  0.4  0.4  0.4  
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 Apply the idea 

Rates and best buys in supermarket 

A good application of division with decimals is to visit a supermarket (or online shopping catalogue). 
Ask students to look at costs and calculate the best buy. Note: Supermarkets have already done a lot 
of the work for us by stating cost/weight on their displays. 

For example: To determine best buy in a supermarket two cans of beans (A and B) are compared. 
This can be done using two methods, as presented in the table below. 

Note: These are rate problems. Connect “per” language to the diagonal slash used to represent it. 
Connect this representation to fraction representations so that cost/mass is also understood as 𝑐𝑐𝑐𝑑

𝑚𝑎𝑐𝑐
.  

Can 1 - Mass: 440 g, Cost: $2.10 

Can 2 - Mass: 300 g, Cost: $1.55 

Method A Method B 

Rate 1: Cost/mass ($/g) Rate 2: Mass/cost (g/$) 

A gives $2.10 ÷ 440 g = $0.0048/g A gives 440 g ÷ $2.10 = 210g/$ 

B gives $1.55 ÷ 300 g = $0.0052/g B gives 300 g ÷ $1.55 = 194g/$ 

B is more expensive because each gram costs 
more. 

B is more expensive because you get less grams 
for each dollar. 

Note: Lower is better for Rate 1, $/g; while higher is better for Rate 2, g/$.) 

One could look at a lot of other situations and use rates to work out best value. It is important to 
recognise that value is more than just money; something may be more expensive but tastes better – 
are we happy to pay a few cents more for something that tastes better?. For example, what are the 
costs of events (e.g., football games, concerts) in relation to how long they go for? This gives 
possibilities of working out cost/time (lower the better) and time/cost (higher the better).  

Of course often there is more than one thing involved in determining value. For instance, a phone 
might have higher text costs and lower call costs or vice versa. This leads to more complex and richer 
investigations with results that require a level of interpretation to connect back to reality – what do 
the values really mean? 

 Extend the idea 

Directed decimals 

Explore multiplicative operations with negative and positive decimal amounts. Ensure students 
understand that principles that apply to integers can also be applied to directed decimals. 

Change parameters 

Revisit scientific notation and indices. Explore multiplicative operations with decimal numbers “by” 
numbers expressed as powers of ten. For example, 3.2 × 103; 0.6 × 103; 3.2 ÷ 103; 0.6 ÷ 103.  
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 

 





Name:              Date:    
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Can you do this? #7 

1. Fill in the following conversions: 

(a)    15 cm  =      mm 

(b)        3 m  =      cm 

(c) 4600 m  =      km 

(d)  60 mm  =      cm 

Obj. 
6.7.1 
a) □ 
b) □ 
c) □ 
d) □ 

2. Write the following numbers using scientific notation.  
For example: 364 000 = 3.64 × 105 

(a) 3 200     ________ 

(b) 0.085    ________ 

Obj. 
6.7.2 
a) □ 
b) □ 

3. What is the value of: 

(a) 3.65 × 10²       

(b) 45 × 10⁻¹     

(c) 0.1 ÷ 10²     

(d) 10 000 ÷ 10²     

Obj. 
6.7.3 
a) □ 
b) □ 

 
Obj. 

6.7.4 
c) □ 
d) □   

4. A room is 3 m wide and 4000 mm long.  
Square floor tiles are 500 mm across. 

(a) How many tiles will fit across the room? 

 

 

(b) How many tiles will fit along the room? 

 

 

(c) How many tiles needed to cover the floor? 

 

Obj. 
6.7.1 
a)i □ 

ii □ 
iii □ 

b)i □ 
ii □ 

iii □ 
c)i □ 

ii □ 
iii □  

Room 

 

 

 4000mm 

 

3m 

Tile 

500mm 



 

Page 62  Cycle 7: Metric measure conversions YuMi Deadly Maths 

Cycle 7: Metric Measure Conversions 

Overview 

 Big Idea 

Units of metric measure, like the decimal number system, rely on place value groupings where places 
increase or decrease in multiples of ten. Conversion between units of measure is relatively simple if 
connections are made to place value understanding. For example, understanding the meaning of 
prefixes used for standard units, knowledge of the base units for a measured attribute and an 
understanding of the multiples that apply to standard units, provide students with a fundamental 
understanding of the connectivity between measures.  

 Objectives 

By the end of this cycle, students should be able to: 

6.7.1 Convert between common metric units. [6MG136] 

6.7.2 Express numbers in scientific notation. [9NA210] 

6.7.3 Multiply decimals by powers of 10. [6NA130] 

6.7.4 Divide decimals by powers of 10. [6NA130] 

 Conceptual Links 

This cycle provides the basis of metric conversion for length units that can be applied to most units of 
metric measure. 

 Materials 

For Cycle 7 you may need: 

• metre ruler 

• standard ruler (cm and mm) 

• dressmakers’ tape measure 

• specialist measuring devices 

• tape measure (PE for measuring long jump) 

• height stick (PE for measuring high jump) 

• pocket tape measure (2 m or 5 m) 

 

 Key Language 

Standard units, metre, centimetre, millimetre, kilometre, bigger and smaller units, prefixes for 
standard length measure units, scientific notation, International System of Units (SI) 
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Definitions 

International System of Units: international conventions for decimal metric measure prefixes 

centi: one hundredth of base unit (10 –2) 

deci: one tenth of base unit (10 –1) 

kilo: one thousand of base unit (103) 

mega: one million of base unit (106) 

milli: one thousandth of base unit (10 –3) 

Further International System Units: http://physics.nist.gov/cuu/Units/prefixes.html 

 Assessment 

Anecdotal Evidence 

Some possible prompting questions: 

• What are the units of measure you have? 

• If you are calculating, are the measures the same unit? 

• Which measure will it make more sense to convert? 

• Are you changing from a larger unit to a smaller unit or from a smaller unit to a larger unit? 

• Will there be more or less of the unit to measure the same distance? 

• Do you need to multiply or divide? 

• What is the relationship between the units? How many places apart are they? How many powers 
of ten difference? 

• What do you need to multiply by? 

• Note: for most metric conversions multiply/divide by 1000 (differences in places is 3 powers of 
10). Between centimetres and metres the difference is only 2 powers of 10; multiply/divide by 
100. Between millimetres and centimetres the difference is only 1 power of 10; multiply/divide 
by 10. 

Portfolio Task 

Skills developed and reinforced in this cycle may assist students will measurement conversions for 
calculations in Portfolio Task 06: Calculating Costs. 
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RAMR Cycle 

 Reality 

Where possible, find real-life contexts in which to embed the activities. Extend from situations 
explored in Unit 4 that were represented as common fractions. Choose situations where it is 
appropriate to measure in millimetres, centimetres, metres and kilometres. Reinforce the magnitude 
of each unit and connect common fraction representations to the decimal fraction representations. 

 Abstraction 

The abstraction sequence for this cycle extends from common fractions developed in Unit 05 for 
measuring length. This sequence needs to connect standard measuring units with place value ideas, 
standard prefixes and abbreviations, to complete students’ ability to measure with and convert 
between standard metric units. A suggested sequence of activities is as follows: 

1. Kinaesthetic activity. Reinforce students’ physical sense of standard units. Experience the 
magnitude of each unit physically. Find examples in the real world that are 1 mm, 1 cm, 1 m and 
1 km long. Have students estimate 10 m or a decimetre, then take a trundle wheel along to 
check. Students should be encouraged to count each metre as they go as one-tenth, two-tenths 
and so on to one decimetre. Record these fractions and counting sequence as decimals. This 
could be repeated using the 100 m track as one tenth of a kilometre to reinforce the counting 
and recording of the distance walked as tenths of a kilometre up to 1 km walked. 

2. Represent with materials. Revisit the activity from Unit 05 using different colours of 1 cm grid 
paper, cut ten strips that are 10 cm in length. Tape alternating colours together to form a folding 
1 m measuring strip. This can be used to identify centimetres and groups of 10 centimetres to 
make up a metre.  

3. Connect to language. Reinforce connections between metric measure and decimal place value 
using decimal digits instead of fractions. Use the maths mat as a large place value chart and lay 
out place value cards from thousandths to millions. Place a Metre card under the ones. Research 
the meaning of prefixes kilo, centi, milli. Place these cards under their respective place values 
respective to the metre. Fill in non-standard metric prefixes to cover empty places (these exist 
although not used within the SI unit set). See Resource 6.7.1 Metric prefixes chart for student 
desks and Resource 6.7.2 Connecting place value to metric measure for more detail. Reinforce 
the connection between the common fraction name and the decimal fraction place.  

4. Reinforce place value link to conversion. Construct a larger copy of Resource 6.7.3 Metric 
expanders (kilometres, metres and millimetres) and cut it out. Fold as for number expanders. Use 
them to relate km, m and mm as for place-value cards. The connection needs to be made 
between the unit of measure and the ones place. If measuring in metres, then the unit for 
metres is placed under the ones place on the place value chart. The decimal fraction then 
represents centimetres and millimetres. To convert to millimetres, slide the chart across the top 
of the digits until the ones place is above the number for the millimetres. Focus student attention 
on the fact that the chart slid three places to the right to change the thousandths place for 
metres to the ones place for millimetres. Connect to the symbolic multiplication that 
accompanies this conversion. Resource 6.7.4 Metric slide rules may also be useful here.  

 

Resource 

Resource 6.7.1 Metric prefixes chart for student desks 
Resource 6.7.2 Connecting place value to metric measure (large cards) 
Resource 6.7.3 Metric expanders 
Resource 6.7.4 Metric slide rule 
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5. Additional measuring practice is always useful. It may be beneficial to repeat measures of 
personal referents. Connect these to decimal measures (e.g., represent measures as centimetres 
with millimetres as decimal fractions of centimetres). If students are not keen to repeat 
measures of personal referents, this could be varied to consider equivalent measures using dolls 
or models to measure. Students may be engaged by measuring lengths and wheels of model cars 
and real cars, lengths and widths of collections of leaves from different trees, any items of 
interest that can be measured and recorded using metric measure and decimal fractions.  

 

Resource Resource 6.7.5 Determining personal referents 

 

Mathematics 

Conversion of metric measures 

Find contexts for students to practice measuring and converting between measures using metric 
measure and decimal fractions. Explore addition of decimals in the context of measuring dimensions 
of items and finding the associated perimeter. Simple multiplication of decimals can also be explored 
here by adding a length to a width and then doubling.  

Scientific notation 

Encourage students to practice writing conversion equations (e.g., 2 m × 1000 = 2000 mm). Use a 
calculator to connect repeated multiplication (10 × 10 × 10) to 103. Rewrite the equation (e.g., 2 m × 
103). Connect each place to its corresponding power of 10. Practice converting between large 
numbers and their corresponding representation in scientific notation. 

 

Reflection 

 
Check the idea  

Use a Thinkboard or Concept map to connect equivalent measures in kilometres, metres, 
centimetres, millimetres to a measurement of a common item. Ask students to highlight the most 
accurate unit to use for the item. Also connect to Scientific notation for each measure where values 
include larger whole numbers. These Thinkboards may also be created as puzzles to be recreated. 

 

Resource Resource 6.7.6 Equivalent metric measure Thinkboards 

 

Apply the idea 

Once students have reached the point where they understand a need for standard units, engage 
them with tasks to practice measuring items in centimetres or metres to compare lengths. 
Familiarise students with a range of measuring tools/devices (rulers are simplest, dressmakers’ tape 
measures and building tape measures are more complicated to read). Identify which measure is the 
unit for each marking to assist with correct reading of the measuring device. 

 

Extend the idea 

Explore other instances of measures that are related and expressed using fractions and decimals. For 
example, scales on measuring jugs connect litres and millilitres, scales for mass connect grams and 
kilograms. Consider the relationships between these measures, their fractions, decimal fraction 
representations and conversions between units. Explore how Scientific notation might be used to 
record very large quantities of small units in these instances.  
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Teacher Reflective Notes 
This page is provided for you to record any notes with respect to resources you found useful, 
additional resources, activities and/or models that worked well/not so well. 
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Unit 06 Portfolio Task – Teacher Guide 

Calculating Costs 

 

Content Strand/s: Number and Algebra 

Resources Supplied: 
• Task sheet 
• Teacher guide 

Other Resources Needed: 
• None 

Summary: 
The two tasks within this workbook each require a student to use additive and multiplicative 
operations with fractions and decimals to explore the cost of catering a school camp, and the cost 
involved with taking a road trip. 

ACARA Proficiencies 
Addressed:  
Understanding 
Fluency 
Problem Solving 
Reasoning 

Content Strands:  
Number and Algebra 
6.2.1 Find a fraction of a quantity where the result is a whole number. 

[6NA127]. 

6.2.2 Find whole number multiples of same-size fractions. [7NA154] 

6.4.1 Represent common fractions of tenths, hundredths and beyond using 
decimal notation. [5NA104] 

6.4.3 Round decimals to a specified number of decimal places. [7NA156] 

6.6.1 Multiply decimals by whole numbers. [6NA129] 

6.6.4 Divide decimals by whole numbers.[7NA154] 
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Calculating Costs 

 
 

 

Your Task:  
This portfolio task has two tasks. You will 

• Explore the cost of catering for a school camp, and 

• Explore the cost of financing a road trip.  

You will use your knowledge of adding, subtracting, multiplying and dividing fractions and 
decimals to complete the tasks.  

 

A calculator will be required for this task. 

 

  

Name  

Teacher  

Class  
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Within Portfolio Task 06, your work has demonstrated the following characteristics: 
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Recall and use of 
facts, definitions, 
technologies and 
procedures to find 
solutions in a 
range of situations 
including some 
that are complex 
unfamiliar 

Recall and use of 
facts, definitions, 
technologies and 
procedures to find 
solutions in 
complex familiar 
or simple 
unfamiliar 
situations 

Recall and use of 
facts, definitions, 
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procedures to find 
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Systematic 
application of 
relevant problem-
solving 
approaches to 
investigate a 
range of 
situations, 
including some 
that are complex 
unfamiliar 

Application of 
relevant problem-
solving 
approaches to 
investigate 
complex familiar 
or simple 
unfamiliar 
situations 

Application of 
problem-solving 
approaches to 
investigate simple 
familiar situations 

Some selection 
and application of 
problem-solving 
approaches in 
simple familiar 
situations. 

Partial selection of 
problem-solving 
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Comments: 
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Task 1: Catering for Camp 

In this task you will be working out the main foods and drinks for a weekend camp. As well 
as these foods, people will be bringing their own snacks and extras. There will be 24 people 
going to the camp. 

1. Calculate the required amounts of each food and the total cost. Show working in the 
spaces provided. 

a. Frozen pizzas  ¼ of a pizza per person  $6 per pizza 

 

 

 

 

 

 

Number of pizzas needed = ____________ Cost of pizzas = ___________ 

 

 

b. Sausages  200 g (0.2 kg) per person $7.60 per kg 

 

 

 

 

 

 

Mass of sausages needed = ____________ Cost of sausages = ___________ 

 

 

c. Sliced bread  1/8 of a loaf per person  $2.98 per loaf 

 

 

 

 

 

Number of loaves needed = ____________ Cost of bread = ____________ 
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d. Salad bags  1/3 bag per person  $4 per bag 

 

 

 

 

 

Number of salad bags needed = _________ Cost of salad bags = _________ 

 

 

e. Eggs   2 eggs per person   $3.49 per dozen 

 

 

 

 

 

 

Number of dozen eggs needed = _________ Cost of eggs = ___________ 

 

 

f. Soft drink (2 litre bottles) 500 mL per person  $2.60 per bottle 

 

 

 

 

 

 

Number of bottles needed = ______________ Cost of soft drinks = _________ 
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As well as the foods you have already calculated, the organisers will be providing sandwich 
fillings which cost $30 and breakfast cereals that cost $25. 

2. Calculate the total cost of all the foods above, including the sandwich fillings and 
breakfast cereals. 

 

 

 

 

 

 

 

Total cost of foods = _____________ 

 

 

3. What is the cost per person (24 people). 

 

 

 

 

 

 

 

Cost per person = ____________ 

 

 

4. To find the most convenient amount of money to charge each person, round the cost 
per person up to the nearest 50 cents. 

 

Charge per person = ___________ 
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Task 2: Road trip 

In this task you will be planning a road trip. This includes calculating the distances and times 
of travel, as well as some costs.  
 

5. Calculate the total distance of the 
journey from Brisbane to Emerald 
from the sector distances from the 
map as shown below. Mark the 
journey on the map. 

 
Brisbane – Maryborough  166 km 
Maryborough – Gladstone 366 km 
Gladstone – Rockhampton 107 km 
Rockhampton – Emerald  263 km 

 
 
 

 
 
 
Total distance of journey = _____________ 

 
 

6. If the driver can average 80 km/h on the trip, how many hours of driving will the trip 
take? 

 
 
 
 
 
 

7. It is recommended that drivers take breaks during long trips, and a minimum of 10 
minutes break for every hour of driving is necessary. This can include a meal break 
and other shorter breaks. 

 
For this trip, what total break time should be included? 

 
 
 
 
 
 

8. Now find the total minimum time that should be allowed for the trip. 
 
 
 
 
 



 

XLR8-ARC booklets: © QUT YuMi Deadly Centre 2016 Unit 06 Portfolio Task: Calculating Costs     Page 7 

9. If the trip is started at 7 am, and it is not intended to drive right through to Emerald 
in one day, where would it be convenient to have an overnight stop? Why? 

 
 
 
 
 
 
 
 
 

Challenge 
 

10. The fuel consumption of a car is given in the rate unit litres per 100 kilometres (L/100 
km). The car for this trip has a highway average fuel consumption of 8.2 L/100 km. 
 
At this rate of fuel consumptions, calculate the quantity of fuel in litres that would be 
used on the trip (round your answer to the nearest tenth of a litre). 
 
 
 

 
 
 
 
 

11. If the price of fuel is 159.9 cents per litre, what is the total cost of the fuel for the 
trip? 
 
 
 

 
 
 

 
12. How much will be spent on petrol there and back?  

 

 





Name:              Date:    
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Can you do this now? Unit 06 

1. Continue the sequences and identify the changes  

Example:           𝟏
𝟗
 ,    𝟑

𝟗
 ,    𝟓

𝟗
 ,    𝟕

𝟗
 ,    𝟗

𝟗
            Change: + 𝟐

𝟗
 

(a)   1
16

 , 5
16

 , 9
16

 , _______ , _______ , _______       Change: ________ 

Obj. 
6.1.1 

a) □□ 
□□□  

(b)   25
12

 , 22
12

 , 19
12

 , _______ , _______ , _______        Change: _______ Obj. 
6.1.2 

b) □ □ 
□□□ 

(c) 1 1
11

 , 1 5
11

 , 1 9
11

 , _______ , _______ , _______   Change: _______ Obj. 
6.1.3 

c) □□ 
□□□  

2. Solve the following equations: 

(a) 3
7

 +  2
7

=  

(b) 6
8

 +  3
6

= 

(c) 26
30
−  3

10
=   

 

Obj. 
6.1.4 
a) □  

 
Obj. 

6.1.6 
b) □ 

 
Obj. 

6.1.5 
c) □ 

3. Write the equation and solve the problem for the following stories: 

(a) Julie drove 25 1
4
 km from home to a shopping centre, then drove 

12 3
8
 km to a friend’s place, then drove 22 1

2
 km home. How many 

kilometres did she drive? 

               

               

               

Obj. 
6.1.4 
a) i.□  

ii.□ 
iii.□  
iv.□ 
v.□     

(b) Jim had 3
8
 of a chocolate bar. He gave 1

3
 of the chocolate bar to his 

friend. How much of the chocolate bar did Jim keep? 

               

               

               

Obj. 
6.1.7 

b) i.□  
ii.□ 
iii.□  
iv.□ 
v.□     
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4. What is 1
4
 of 24?    

Obj. 
6.2.1 

 □ 

5. What is 6 lots of  3
9
 ?    Obj. 

6.2.2 
i. □  

ii. □ 

6. Solve the equations: 

(a) 3
8

× 3
7

= 

Obj. 
6.2.3 

i. □  
ii. □  

iii. □  

(b) 2 1
9

× 2
5

= Obj. 
6.2.4 

i. □  
ii. □  

iii. □  
iv. □ 

(c) 3
7

× 3 1
3

= Obj. 
6.2.4 

i. □  
ii. □  

iii. □  
iv. □ 

7. Write the equation and solve the problem for the following story: 

Five friends each had 5
8
 of a pizza. How much pizza did they have 

altogether? 

               

               

               

               
 

Obj. 
6.2.2 

i. □ 
ii. □ 

iii. □ 

8. How many quarters in: 

(a) 2 1
4
          quarters 

Obj. 
6.3.1 
a) □  

(b) 4 1
2
         quarters Obj. 

6.3.1 
b) □ 
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9. Solve the equations: 

(a) 3
8
 ÷ 4 = 

 
Obj. 

6.3.2 
a)i. □  

ii. □ 

(b) 7
8

÷ 1
2

= 

 Obj. 
6.3.3 

b)i. □  
ii. □ 

iii. □ 

10. Write the equation and solve the problem: 

(a) 3 1
2
 cakes were shared evenly between 14 students. How much 

cake did each student receive? 

 

 

Obj. 
6.3.2 
 i. □  
ii. □ 

iii. □ 

(b) Six students in the class had mobile phones at school.  
There were 32 students in the class. 
What fraction of the class had mobile phones at school? 

         

Obj. 
6.3.4 

i. □  
ii. □ 

11. Write the number words as decimal numerals for each sentence: 

(a) To make Asian noodle salad, half a wombok is needed.    
Obj. 

6.4.4 

a) □ 

(b) The probability of rolling a 5 on a die is one tenth and sixty-seven 
thousandths.            Obj. 

6.4.1 
b) □ 
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12. Write the numerals in number words for each sentence: 

(a) The table was 2.4 m long.          

               

Obj. 
6.4.1 
a)i. □ 

ii. □ 
iii. □ 

(b) The distance to the shops is 15.65 km.       

               
Obj. 

6.4.1 
b)i. □ 

ii. □ 
iii. □ 

13. Rank the following numbers on a number line:   

17.6,   8.1,   4.7,   12.5,   18.9,   0.3,   14.6,   7.3 

 

Obj. 
6.4.2 

□□ 
□□ 
□□ 
□□ 

14. Rank the following numbers on a number line:   

⁻5.6,   3.1,   ⁻2.7,   2.5,   7.9,   ⁻0.3,   0.6,   ⁻4.3 

 

Obj. 
6.4.2 

□□ 
□□ 
□□ 
□□ 

15. Are the following numbers rational or irrational? 

(a) 1.36����   □ rational  □ irrational 

(b) 0.75   □ rational  □ irrational 

(c) 1.024831����������  □ rational  □ irrational 

(d) π    □ rational  □ irrational 

Obj. 
6.4.6 
a) □ 
b) □ 
c) □ 
d) □ 

16. Are the following decimals terminating or recurring? 

(a) 1.36����   □ terminating  □ recurring 

(b) 0.75   □ terminating  □ recurring 

(c) 1.024831����������  □ terminating  □ recurring 

(d) 0.543 278  □ terminating  □ recurring 

Obj. 
6.4.5 
a) □ 
b) □ 
c) □ 
d) □ 

10 20 0  

0 10 ⁻10 
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17. Round these numbers to three decimal places: 

(a) 3.14159           (b) 0.16161616      
Obj. 

6.4.3 
a) □ 
b) □ 

18. Write these common fractions as decimal fractions: 

(a) 1
3
       (b) 3

4
       

 (c) 11
8

       (d) 3
12

      

Obj. 
6.4.4 
a) □ 
b) □ 
c) □ 
d) □ 

19. Write these decimal fractions as common fractions: 

(a) 0.65      (b) 1.33      

 (c) 2.07      (d) 0.016      

Obj. 
6.4.1 
a) □ 
b) □ 
c) □ 
d) □ 

20. Use 10×10 grids to show: 

(a) 15 hundredths 

          

          

          

          

          

          

          

          

          

          
 

(b) 6 tenths and 8 hundredths 

          

          

          

          

          

          

          

          

          

          
 

 

Obj. 
6.4.1 
a) □ 
b) □ 

21. Complete the patterns and write the change rule for each pattern.  

(a) 1.03, 1.23, 1.43, _____, _____,  _____  The change is _____ 

 

(b) 0.2, 0.25, 0.3, _____, _____, _____  The change is _____ 

 

(c) 0.6, 0.49, 0.38, _____, _____, _____  The change is _____ 

 

(d) 1.4, 1.28, 1.16, _____, _____, _____  The change is _____ 

Obj. 
6.5.1 

a)□□□ 
□□ 

b)□□□ 
□□ 

c)□□□ 
□□ 

d)□□□ 
□□ 
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22. Solve the equations: 

(a) 0.44 +  0.64 =   
Obj. 

6.5.2 
a) □ 

(b) 2.43 − 0.29 =  

 
Obj. 

6.5.3 
b) □ 

(c) 15.6 −  5.9 = Obj. 
6.5.3 
c) □ 

 

(d) 0.205 + 0.75 =  Obj. 
6.5.2 
d) □ 

23. Write the equations and solve the problems: 

(a) The table was 2.25m long. A tablecloth needs to hang 0.5m over 
each end.    How long does the tablecloth need to be?  

 

 

Obj. 
6.5.2 
a)i □ 

ii □ 
iii □ 

(b) Jack has to walk 13.25km to the shops from home. The swimming 
pool is 18km away from home. How much further away from 
home is the swimming pool? 

Obj. 
6.5.3 
b)i □ 

ii □ 
iii □ 

24. Solve the equations: 

(a) 1.47 × 12 =   Obj. 
6.6.1 
a) □ 

(b) 0.6 ÷ 0.5 =   
Obj. 

6.6.5 
b) □ 
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25. Write the equations and solve the problems: 

(a) The whiteboard is 2.2m long. What is the measurement to mark 
halfway along the board? 

Obj. 
6.6.2 
a)i □ 

ii □ 
iii □ 

(b) A wall is 5.4m long. Six plaster sheets are covering the wall. How 
wide is each sheet of plaster? 

 Obj. 
6.6.4 
b)i □ 

ii □ 
iii □ 

26. A room is 3m wide and 4m long.  
Square floor tiles are 0.5m across. 

(a) How many tiles will fit across the room? 

 
 
 

(b) How many tiles will fit along the room? 

 

Obj. 
6.6.3 
a)i □ 

ii □ 
iii □ 

b)i □ 
ii □ 

iii □ 

 

  

Tile 

0.5m 

Room 

 

          

4m 

 

3m 
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27. Jellybeans in bulk cost $7.50 for 1000 g. 

(a) What fraction of 1000 g is 350 g? 

 

 

 

(b)  If you buy 350 g of jellybeans, how much will they cost? 

 

 

 

Obj. 
6.6.6 
a)i □ 

ii □ 
iii □ 

b)i □ 
ii □ 

iii □ 

28. Another market sells jellybeans in 250g bags for $1.80. 

(a) What fraction of 1000 g is 250 g? 

 

 

 

 

(b) How much will 1000 g of jellybeans cost from this market? 

 

 

 

 

(c) Is it cheaper to buy 1000 g of jellybeans in bulk or in 250 g bags? 

              

Obj. 
6.6.6 
a)i □ 

ii □ 
iii □ 

b)i □ 
ii □ 

iii □ 
c) □ 

29. Fill in the following conversions: 

(a)    25 cm  =      mm 

(b)        6 m  =      cm 

(c) 4300 m  =      km 

(d)  45 mm  =      cm 

Obj. 
6.7.1 
a) □ 
b) □ 
c) □ 
d) □ 
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30. Write the following numbers using scientific notation.  
For example: 364 000 = 3.64 × 105 

(a) 3 350     ________ 

(b) 0.095     ________ 

Obj. 
6.7.2 
a) □ 
b) □ 

31. What is the value of: 

(a) 2.45 × 10²       

(b) 43 × 10⁻¹     

(c) 0.2 ÷ 10²     

(d) 10 450 ÷ 10²     

Obj. 
6.7.3 
a) □ 
b) □ 

 
Obj. 

6.7.4 
c) □ 
d) □   

32. A room is 3 m wide and 4000 mm long.  
Square floor tiles are 500 mm across. 

(a) How many tiles will fit across the room? 

 

 

(b) How many tiles will fit along the room? 

 

 

(c) How many tiles needed to cover the floor? 

Obj. 
6.7.1 
a)i □ 

ii □ 
iii □ 

b)i □ 
ii □ 

iii □ 
c)i □ 

ii □ 
iii □  

 

 

Room 

 

 

 4000mm 

 

3m 

Tile 

500mm 
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