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1 Background, Stages and Beliefs 

The YuMi Deadly Centre (YDC) is a research and service centre in QUT’s Faculty of Education dedicated to 

improving mathematics teaching and learning, and thus employment and life chances, of all students. To achieve 

its purpose, YDC has developed three types of teacher-training projects based on the mathematics pedagogy 

developed by YDC staff called YuMi Deadly Maths (YDM), as follows: (a) YDM general pedagogy projects; 

(b) three YDM accelerated learning projects: Accelerated Inclusive Mathematics (AIM), Accelerating 

Mathematics Learning (XLR8), and AIM Early Understandings (AIM EU); and (c) a YDM enrichment and extension 

project, the Mathematicians in Training Initiative (MITI). 

The three types of projects have different purposes: YDM general pedagogy projects provide training in the basic 

YDM pedagogy for teachers of mathematics in Foundation to Year 9; YDM accelerated learning projects provide 

training in an acceleration pedagogy for teachers of students whose mathematics learning falls behind their year 

level; and MITI provides training in an enrichment and extension pedagogy for teachers preparing students for 

success in high-level mathematics subjects  

This Overview book describes MITI in relation to the YDM pedagogy. After this first chapter, the remaining 

chapters of the book: 

(a) summarise the structural basis of the YDM pedagogy and its relation to MITI; 

(b) summarise the YDM Reality–Abstraction–Mathematics-Reflection (RAMR) teaching cycle and its 

relation to MITI; 

(c) describe the proposed two stages in MITI projects as they are currently conceived; and  

(d) discuss how MITI could be implemented in schools.  

This chapter introduces MITI by providing background about its purpose, objectives and outcomes, summarising 

the two stages of MITI, and discussing the beliefs behind MITI. 

1.1 Background of MITI 

The focus of MITI is threefold: (a) to improve mathematics performance in schools; (b) to increase participation 

in Years 11 and 12 high-level mathematics subjects for all students; and (c) to achieve equity between Indigenous 

or low-SES students and other students in high-level mathematics subjects. The aim is to increase the number of 

students meeting the mathematics entry requirements for university courses leading to science, technology, 

engineering and mathematics (STEM) professions; particularly for those from schools where this has been 

historically low, such as schools with high enrolments of Indigenous and low-SES students. Attracting more 

students to the study of high-level mathematics and entry into STEM disciplines will enhance Australia’s 

economic future.  

1.1.1 Purpose 

At present, urban secondary schools with significant numbers of low-SES students face real difficulty in preparing 

academically high-performing students for university entry into STEM-related courses. These schools are 

confronted by the prospect that their ethos and culture is becoming increasingly anti-academic; a status 

reinforced by home, community and teacher low expectations (Sarra, 2003) and peer pressure to reject academic 

work as a viable option upon which to develop a future (Carroll et al., 2009). Diminished academic performance 

may be attributed to the following factors: past enrolment at an underperforming primary school; attendance 

and behaviour difficulties (Cooper, Baturo, Warren, & Grant, 2006); living in poverty; violence and substance 
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abuse in dysfunctional homes; cultural and language backgrounds that conflict with the culture of schooling 

(Bellert, 2009); and a lack of academic role models.  

However, YDC believes these low-SES schools do have students with the potential to be academically high 

performing, since low performance is often a function and consequence of inadequate prior experiences and low 

cultural capital (Bourdieu, 1993), not intelligence. Unfortunately, these high-potential students are often 

neglected because schools struggle to develop and sustain a high-performing academic stream that caters to the 

needs of these students. Despite this trend, there are examples of school change where new mathematics 

teaching and learning practices have resulted in mathematically high-performing students.  

The MITI project represents a convergence of educational, social and economic benefits. Additionally, although 

it focuses on mathematics, the project facilitates capacity building of academic studies in low-SES secondary 

schools, so that all students have opportunities to meet their academic potential in all school subjects and gain 

entry into university courses that lead to high-value employment, through a general uplift in abilities. It 

represents a win-win solution for government, community and individuals in relation to “closing the gap” 

(Department of Families, Housing, Community Services and Indigenous Affairs, 2009; Steering Committee for the 

Review of Government Service Provision, 2009). 

1.1.2 Focus 

The design of MITI has been influenced by an analysis of 

previously successful YDC mathematics projects in terms of 

ontology, pedagogy and methodology. The project reflects a 

convergence of cognitive, affective and cultural research built 

around a framework for building academic studies through use 

of information and communication technologies (ICTs) and 

professional development (PD) for teachers and a focus on 

deep learning for students (see Figure 1). The design has three 

components:  

1. Cognitive. The project focuses on structural learning of mathematics through abstraction or generalisation 

(Cooper & Warren, 2008), aiming to reveal the big ideas of mathematics (e.g. the abstract schema of 

Ohlsson, 1993), and developing a “mathematical eye” through which to view and interpret the world. The 

pedagogy is based on social constructivism (English & Halford, 1995), but built around a cycle of instruction, 

YDM’s Reality–Abstraction–Mathematics–Reflection or RAMR teaching cycle, which was influenced by 

Wilson’s Activity Type cycle (Ashlock, Johnson, Wilson, & Jones, 1983), and the instructional levels of Baturo, 

Cooper, Doyle, and Grant (2007).  

2. Affective. The project is based on integrating mathematics instruction with strategies for whole-school 

change similar to those advocated by the Stronger Smarter Institute (Sarra, 2003), namely: to challenge 

behaviour, build pride, make identity positive with respect to learning, ensure high expectations, enable 

local leadership, and integrate school and community. The project also focuses on making students’ and 

teachers’ affective responses more positive: building interest, motivation, resilience, confidence and positive 

attribution with respect to mathematics and with respect to liking and succeeding in mathematics. 

3. Culture. The project is based on contextualising mathematics to students’ culture and language. The research 

of YDC staff in communities where language, activity and culture are different from that of mainstream schools 

has shown that: (a) local language is a major part of mathematics instruction (Schäfer, 2010; Young, van der 

Vlugt, & Qanya, 2005); (b) local knowledge must be made legitimate within the classroom; and (c) local culture 

must be celebrated and not negated (Baker, Street, & Tomlin, 2006; Ewing, Cooper, Baturo, Matthews, & Sun, 

2010). In this way, students’ mathematics learning begins with what is already known.  

The framework for building academic studies is based on PD to improve teacher and school capacity, ICT use to 

relate mathematics learning to 21st-century skills and enable authentic investigations, and a sequencing of 

instruction that enables growth in deep understanding of mathematics. In particular: 

Figure 1  Design of MITI project 
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1. Professional development (PD) takes account of theories of effective teacher change evident in Baturo, 

Warren, and Cooper (2004) and Lamb, Cooper, and Warren (2007), particularly around interaction between 

researcher input and teacher need and the role of success when trialling new ideas. It builds communities 

of practice in which teachers act together with the student population (Wenger, 1998).  

2. Information and communication technology (ICT) uses leverage to amplify the effect available from ICT 

(Jonassen, 1992) when used to model mathematics. Growth in deep understanding is based on theories from 

ARC Linkage Project LP0348820 (Cooper & Warren, 2011), which argues such understanding is based on 

generalisation and abstraction and this occurs across models and representations when these follow a 

nested structured sequence. 

1.1.3 Objectives and outcomes 

To bring about change with regard to participation in mathematics, MITI aims to focus on mathematics attitudes, 

beliefs and learning with the objective of developing teacher capacity to build students’ interest, confidence and 

knowledge in mathematics; that is, to develop deep understanding of powerful mathematics. In turn, this leads 

to success in high-level mathematics. 

The particular objectives are as follows: 

(a) develop pedagogy and resources enabling teachers to facilitate deep learning of powerful mathematics 

ideas in order to renew the learning profiles of schools with regard to mathematics, particularly for 

Indigenous and low-SES students; 

(b) trial and document the pedagogy and resources in relation to outcomes with regard to PD without and 

within the schools, classroom teaching practices and student learning outcomes;  

(c) identify actions and behaviours linked to effective and ineffective student learning trajectories, 

classroom and school practices, and teacher PD and community involvement activities that facilitate or 

inhibit the growth of high-level mathematics capability;  

(d) compare and refine outcomes between and across schools and classes, and pedagogy and resources, 

and reconstruct a theory of enrichment and extension behind pedagogy and resources; and 

(e) draw implications for building capacity in the study of high-level mathematics (and academic studies in 

general) in urban secondary schools with high enrolments of Indigenous and low-SES students, to increase 

students’ opportunities to enter high-value professions (improving employment and life chances). 

The particular outcomes are as follows:  

(a) student learning – motivation, confidence and understanding to progress and to succeed at post-

compulsory mathematics at the highest level;  

(b) resources – culturally and contextually appropriate resources to enable teachers to facilitate deep 

learning of powerful mathematics;  

(c) services – PD workshops to train teachers in MITI pedagogy and in using the resources, and an online 

support framework covering email communication, discussion forum and training modules; and  

(d) research – involving all teachers in action research on their practices, analysing data provided by 

teachers on researcher actions  teacher practices  student learning, and drawing implications 

for theory, pedagogy, resources and PD.  
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1.2 Summary of MITI stages 

The MITI pedagogy is developed through two stages as follows. These stages prepare for teaching in Years 7–12 

and in advanced mathematics subjects (Mathematical Methods and Specialist Mathematics).  

1.2.1 Stage 1: Investigations, problems and seamless sequencing of powerful mathematics 

The objectives of this stage are to enrich and extend the YDM pedagogy to enable mathematics teachers to:  

(a) identify and understand the structure of high-level, powerful mathematics with respect to sequences, 

connections and big ideas;  

(b) build these structures and develop their strength with respect to recalling mathematical ideas, solving 

problems and laying the foundation for later learning; 

(c) identify, modify, construct and effectively teach investigations and problems appropriate for their students 

in a manner that helps build powerful mathematics ideas;  

(d) build student motivation, confidence and understanding as students move from lower years to and 

through high-level mathematics in Years 10 to 12; and  

(e) use digital technologies to assist with the above.  

The stage focuses on the training of teachers to improve teaching and learning with respect to the following: 

(a) the development of mathematics as a vertical and horizontal schema of interconnected and sequenced 

ideas built around key big ideas (see Chapter 2), a rich schematic structure of big ideas that fully includes 

definitions, connections, applications and experiences; 

(b) the RAMR teaching cycle of the YDM pedagogy (see Chapter 3), bringing in the Renzulli (1976) approach 

to teaching mathematics to able students (see Chapter 4), changing instructional approaches from 

textbook pages of exercises to problems and investigations, and developing classroom techniques to 

get the most from these; and 

(c) the creation of engaging instructional sequences that teach lower level ideas in a way that seamlessly 

extends to higher level forms of the same idea, particularly using digital technologies to assist in 

developing these sequences, following the Review–Explore–Analyse–Link (REAL) approach to their use 

(see Chapter 4).  

This stage is supported by an online community and exemplar materials which include: (a) this MITI Overview 

book; (b) a collection of 45 investigations designed to cover all topics across Years 7 to 9; (c) an initial collection 

of ideas for teaching with technology and seamlessly sequencing topics for the transition from Years 7–9 to Years 

10–12; and (d) supplementary YDM resource books on big ideas, problem solving and literacy in mathematics. 

1.2.2 Stage 2: Deep applications in futures contexts 

The objectives of this stage are to further enrich and extend the YDM pedagogy to enable mathematics teachers 

to: 

(a) identify and understand how mathematics ideas develop through abstract symbols from lower level 

ideas that relate easily to real-world situations to higher level ideas that can exist only in the 

mathematician’s mind;  

(b) understand the structures (patterns and relationships) that enable mathematics to exist outside of 

normal reality, yet provide the underpinning to that reality; 

(c) build mathematics ideas across year levels and topics, and gain generic understandings of how new 

mathematics can be added to existing knowledge with least difficulty and how this can be placed within 

a global understanding;  
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(d) maintain students’ interest, motivation, confidence and understanding as they complete high-level 

mathematics subjects in order to increase participation in STEM subjects in tertiary institutions; and  

(e) build the above through strong use of digital technologies and applications. 

The stage focuses on the training of teachers to improve teaching and learning with respect to the following: 

(a) the building of big ideas through model-based structured sequences of instruction across year levels 

and the placement of mathematics ideas into more global structures that we call superstructures to 

allow for more seamless learning, holistic recall and relationship to effective schematic/organic learning; 

(b) the extension of the YDM RAMR pedagogy to a double RAMR model as a pedagogical structure to model 

the development of the mathematics that is built on symbol structures that, in turn, come from 

abstraction of number and arithmetic; 

(c) the relationship between applications and understanding underlying mathematics, providing real and 

authentic contexts to powerful mathematics in order to balance mathematics understanding as 

worthwhile in its own right with mathematics understanding as a valuable tool in the world of 

applications and employment opportunities; and  

(d) the identification of the mathematics on which 21st-century activities and applications are based, 

particularly those related to technology and mathematics content covered in the highest level 

mathematics subjects, and to make this mathematics visible to students in a manner that enables deep 

learning of the mathematics and strong capacity to understand applications; and to connect this 

mathematics to learning in the wider STEM field (science, technology, engineering and mathematics). 

This stage is also supported by an online community and exemplar materials which include: (a) the resource 

books from Stage 1; (b) a collection of teaching ideas for pre-emptive transition from Years 7–9 to Years 10–12 

with use of technology where appropriate; and (c) a collection of ideas on futures-oriented industry applications 

of mathematics and how to use them to teach mathematics. 

Overall the two stages and their resources can be summarised as shown in Figure 2.  

 

Figure 2  The two stages of MITI including resources 

1.3 Imperatives and beliefs 

Along with other YDM projects, MITI represents a convergence of social, economic and educational benefits, 

because it is designed to: 

(a) give students the opportunity to change their future to include tertiary education that will provide 

quality employment;  
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(b) increase the pool of people with the mathematical understanding needed to succeed in STEM and other 

high-level professions, the lack of which is putting at risk Australia’s economic development; and  

(c) illuminate learning theory with regard to deep learning of powerful mathematics. 

YDC staff realise that, like the other projects, MITI is a challenging project. Many teachers of mathematics are 

not secondary mathematics trained; they are teaching out of field. They have to learn mathematics and 

mathematics education, and to implement these ideas in challenging classroom situations.  

1.3.1 Imperatives 

All YDC projects follow the imperatives below.  

1. All people deserve to learn the deepest mathematics that empowers them to understand their world and 

solve their problems, and this is possible if mathematics is taught as a conceptual structure, life-describing 

language, and problem-solving tool.  

2. All people can excel in mathematics and remain strong and proud in their culture and heritage if taught 

actively, contextually, with high expectations, and in a culturally safe manner. 

3. All teachers can be empowered to teach mathematics with the outcomes above if they have the support of 

their school and system and the knowledge, resources and expectations to deliver effective pedagogy. 

4. All communities can benefit from strong, empowering mathematics programs that profoundly and positively 

affect students’ future employment and life chances if school and community are connected through high 

expectations in an education program of which mathematics is a part.  

YDC positions its mathematics projects based on these imperatives in four areas, namely, mathematics, 

mathematics learning, mathematics teaching, and school–community relationships. These positions are shown 

in relation to dichotomies that reflect the four areas, and where the horizontal axis is cognitive and the vertical 

is social, giving rise to four quadrants  

1.3.2 Mathematics positioning 

For mathematics, the two dichotomies are instrumental–

relational and oppressing–emancipatory. From a cognitive 

perspective, the dichotomy first described by Skemp 

(1989), instrumental versus relational, reflects two ends of 

perceptions of the nature of mathematics. Mathematics is 

seen from an instrumental perspective as a collection of 

definitions, rules and procedures that find answers in 

particular situations; from a relational perspective it is seen 

as a structure of concepts, strategies and principles that 

provide meaning and underpin applications and problem 

solving. From a social perspective, mathematics can be seen 

as emancipatory or oppressing. Emancipatory mathematics 

contains the ideas that enable students to understand their position in the world and to analyse, and take control 

of, the factors that determine this role; oppressing mathematics contains only the ideas that enable students to fit 

in.  

As the diagram on the right shows, YDM is in the emancipatory/relational quadrant. Its aim is to reveal 

mathematics as a connected structure that provides students with the knowledge to take control of their lives and 

become what they wish. YDC projects include activities that effectively build this form of mathematics. 

  

Emancipatory

Oppressing

RelationalInstrumental

YuMi Deadly 
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1.3.3 Mathematics learning positioning 

For mathematics learning, the two dichotomies are 

procedural–structural and functional–empowering. From 

a cognitive perspective, procedural learning is focusing on 

the rote learning of instrumental mathematics content 

where the student learns disparate facts, rules and 

procedures as pieces of knowledge to be recalled, while 

structural learning is focusing on acquiring relational 

mathematics content as rich schema, where 

mathematically equivalent understandings are connected 

and form integrated networks of information. From a 

social perspective, learning can focus on functional 

outcomes, that is, mathematics content limited to the 

immediate need for it, or it can focus on empowering outcomes, that is, mathematics content that is portable 

and can be translated or transferred to a wide variety of situations. The power of mathematics lies in its 

portability, and portability depends on structural understanding (see section 2.3). Rich schema enables 

knowledge to be applied in all the components that are connected. It facilitates recall because knowledge is 

stored as whole structures not individual components, and it enhances problem solving because the connections 

enable other knowledge to be considered as well as the knowledge that is the focus of the problem.  

As the diagram on the right shows, YDM is in the empowering–portable/structural quadrant. Its aim is to reveal 

mathematics as a connected structure that provides students with portable knowledge that is theirs and not reliant 

on memory of a rule. YDC projects include many activities that effectively enable this type of mathematics learning.  

1.3.4 Mathematics teaching positioning 

For mathematics teaching, the two dichotomies are imitative–

constructing and rule–problem. From a cognitive perspective, 

imitative teaching is the traditional textbook exposition 

teaching where a worksheet or a textbook page of exercises is 

provided, the teacher shows how the first example is 

completed, then the teacher works through one or two more 

with the students, and finally the rest are given to the students 

to be done by imitating the teacher’s process (the simplistic “I 

do, we do, you do” exposition approach) while the teacher 

wanders, checks and helps. On the opposite end, constructing 

teaching focuses on providing experiences from which the 

students can construct their own knowledge in a context where discussion with teachers and peers leads to 

development of language and symbols (that is, social constructivism). Imitative teaching leads to only being able 

to reproduce procedures when specific examples are provided; students are often confused by small changes in 

the form of presentation of examples. Constructing requires new knowledge to be accommodated, and partly 

generated, within students’ existing knowledge and leads to ownership, flexibility and meaning.  

From a social perspective, rule-oriented teaching emphasises recall of ideas as definitions, and learning of 

procedures as rules; it provides collections of rules and procedures to be learnt by repetition. Against this, problem-

oriented teaching starts from real problems (from the perspective of the student), acts out and models these 

problems looking at a variety of models and strategies, develops the mathematical language and symbolic activities 

that will solve the problem, connects this new mathematics knowledge to appropriate existing knowledge, finally 

translating the solution back into the problem situation from whence the teaching process started.  

As the diagram on the right shows, YDM is in the problem-solving oriented/constructing quadrant. Its aim is to 

teach students to solve problems through revealing the structure of mathematics. YDC projects include many 

activities that effectively enable this type of mathematics learning.  

Empowering–Portable

Functional–Limited

StructuralProcedural

YuMi Deadly 
Maths

NATURE OF MATHEMATICS LEARNING

Problem-solving oriented

Rule oriented

ConstructingImitative

YuMi Deadly 
Maths

NATURE OF MATHEMATICS TEACHING
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1.3.5 School–community connections positioning 

For school–community connections, the dichotomies are one-way–

two-way and disconnected–connected. From a cognitive perspective, 

schools and their mathematics programs can relate to the community 

as if they are the experts, always operating the knowledge flow from 

school to community; or they can see themselves in a collaboration or 

co-construction where there is mutual learning and a two-way flow of 

knowledge. From a social perspective, schools can be disconnected 

from their community, operating in their own world and their own way 

within the school fence and seeing themselves as independent from 

the community (i.e. a world within a world); or they can be connected, 

with strong relationships between school, students, parents/carers 

and community members, and seeing themselves as part of the community, allowing the community access and 

some control over the schools’ facilities.  

This involvement with, or connection to, community should also be part of school education with respect to 

mathematics. Examples of possible activities include looking at community methods for measurement, bringing in 

a tradesperson to show how they do mathematics in their trade, or looking at local community building activities 

(e.g. fixing the road, building a park) or events (e.g. catering for a celebration). Indigenous communities are 

particularly strong in mathematics in terms of patterns and relationships. 

As the diagram on the right shows, YDM is in the connected/two-way quadrant. Its aim is to be part of a connected 

school which values community knowledge and welcomes community members into the school to share their 

knowledge. YDC projects provide examples of how this can be one of the most effective ways for Indigenous and 

low-SES students to learn, and this includes mathematics.  

 

Connected

Disconnected

Two-wayOne-way

YuMi Deadly 
Maths
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2 Connections, Sequences and Big Ideas 

MITI is based on the YDM pedagogy, which has structural and teaching-cycle components. This chapter 

summarises the YDM pedagogy with regard to structure, namely connections, sequences and big ideas. We 

describe these structural components as they are presented in YDM and then discuss their role in MITI.  

Connections and sequences provide the basis of the structure of mathematics, characterised as a network or 

schema. They also provide the basis of understanding mathematics, characterised by being able to move easily 

between representations of mathematics ideas, namely, symbols and language, pictures and images, materials 

and models, and real-world situations. Knowledge of connections and sequences assists mathematics teaching 

by providing information on effective sequencing of ideas and connections between ideas.  

Big ideas are schemas that cover more than one topic over more than one year. Knowledge of a big idea means 

being able to understand more than one mathematical topic from one idea. Big ideas are also organic, in that 

they facilitate new learning. Their small number means they represent a powerful way to teach mathematics.  

The chapter concludes by discussing the extension of the role of structure from YDM to MITI. 

2.1 Connections and sequences 

Connections and sequences form mathematical ideas into structure, a network or schema. One of the bases of 

YDM pedagogy is that mathematics should be understood and taught as a structure or schema – as ideas 

collected and formed into structure through sequences and connections.  

2.1.1 Implications and outcomes 

We argue that learning and teaching based on schema has important implications, namely, that learning 

mathematical ideas as a schema leads to the following.  

1. Deep understanding. The idea can be understood not just on its own but in relation to the things to which 

it is connected and to the sequences they form. That is, the whole schema increases the depth of 

understanding of its parts. This is the basis of what it means to understand. For example, the mathematical 

idea of addition is connected to subtraction (inverse) and multiplication (repeated addition) and obeys the 

same properties (e.g. identity, inverse, associativity, commutativity) across a variety of topics (e.g. whole 

numbers, fractions, algebra, functions, and so on). Knowing all this deepens understanding of addition. 

2. Defining, connecting, applying and memorising. The idea comes with knowledge to cover four aspects: (a) it 

fully defines the idea; (b) it includes all connections to and from the idea; (c) it covers all applications of the 

idea; and (d) it keeps, in memory, experiences with the idea. Thus, a schematic understanding of, for 

example, addition would mean knowing all the meanings of addition, knowing all things to which addition is 

connected, knowing all the applications of addition, and remembering experiences with addition.  

However, to ensure an idea is learnt as schema, we argue that the following needs to occur. 

1. Student construction of knowledge. Students have to fit the idea into their existing mathematics and non-

mathematics knowledge structure. Thus, important mathematics cannot be told to students; rather, the 

students must construct the mathematics themselves from experiences. The role of the teacher is to provide 

the experiences and the questions to scaffold the construction.  

2. Teacher knowledge of structures. Teachers need to know the structures of the ideas they are teaching so 

they can use and highlight the structures in their teaching. Connected and sequenced mathematics ideas are 
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best taught by using the mathematics connections and sequences in teaching, repeating the earlier models 

and remembering how later ideas are the same as and different from earlier ideas.  

We therefore advocate that knowledge of structure, connections and sequences is a major component of 

effective teaching because: 

(a) it enables teaching, learning and problem solving through these connections and sequences (schema); 

(b) it enables teaching to build on what precedes and prepare for what follows the subject matter being 

taught (pre-empting); and  

(c) it allows mathematics to be considered as a whole and teaching to move from whole to part.  

2.1.2 Teaching, learning and problem solving 

We argue that knowing mathematics as rich schema facilitates:  

(a) understanding – the network structure of the rich schema relates new knowledge to existing knowledge 

and enables easy movement between representations;  

(b) recall – it is easier to remember a structure than a collection of individual pieces of information; and  

(c) problem solving – the content needed to solve problems is usually peripheral to central or focal thinking 

and peripheral ideas are better found if there is a structure of connections that can be followed from 

the focal thinking.  

As a consequence, we contend that knowledge of the sequenced and connected structure of mathematics can 

assist teachers to be effective and efficient in teaching mathematics. It enables teachers to do the following.  

1. Determine what mathematics is important to teach. Mathematical ideas with many connections and/or 

which form a part of sequences are more important to teach than mathematical ideas with few connections 

or little use beyond the present. Secondly, the connections and sequences to which mathematical ideas 

belong are as important as the ideas themselves and should be included in instruction.  

2. Link new mathematics to existing known mathematics. Linking new mathematical ideas to existing ideas 

places the new learning within a schema of connections and sequences. This makes the new ideas easier to 

understand, recall and use in problem solving. Knowledge of the structure of mathematics enables teachers 

to ensure all connections and sequences are included when teaching new ideas. 

3. Choose effective instructional materials, models and strategies. Mathematical ideas that are connected to, 

or in sequence with, other mathematical ideas can be taught with similar materials, models and strategies 

used in teaching the other ideas. Knowing structure means that appropriate materials, models and strategies 

are known, and using these materials, models and strategies also reinforces the structure.  

4. Teach mathematics in a manner that makes it easier for later teachers to teach more advanced 

mathematics (pre-empting). Knowledge of mathematics structure means knowing what mathematics 

follows present teaching. This enables teachers to teach in a form that lays a foundation for (pre-empts) the 

ideas the later teacher will use and makes teaching easier for the later teacher.  

2.1.3 Seamless sequencing and pre-empting 

The YDM pedagogy is based on sequencing between connected ideas being seamless; that is, the movement 

from one idea to the next should not be inhibited by concepts being taught for the first idea that do not transfer 

to, or worse still do not work for, the second idea. Such seamless sequencing is a major feature of acceleration 

because the previous learning assists with the next learning. The following two examples provide insight into the 

need for this type of sequencing. 
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1. Whole number algorithms to algebra calculation. If we teach that whole numbers are added by adding like 

place values (and renaming, if needed), this can translate to algebraic addition being adding like variables – 

this is even stronger if we use vertical addition for algebra as below:  

       4 6 2      3a + 7b 

     + 2 3 5   + 5a + 2b 

        6 9 7      8a + 9b 

2. Decimal numbers to percent. If we teach flexibility of decimal notation (e.g. 24 = 2.4 tens = 0.24 hundreds), 

we can teach that percent being hundredths is place value with the decimal point after the hundredths 

instead of after the ones – this means that 0.075 ones = 7.5 hundredths = 7.5%. 

Mathematics is replete with such examples, and this focus of the YDM pedagogy on seamless sequencing and 

pre-empting is one of its major strengths. The YDM pedagogy ensures prerequisite mathematics is taught so it is 

an easy transition from simpler mathematics in earlier years to more difficult mathematics in later years. 

2.1.4 Whole-to-part teaching 

One of the powerful ways to teach mathematics is to understand the 

major relationships in mathematics. For example, simplistically, 

European mathematics could be considered to grow out of two views of 

reality: number and shape. The basis of number was the unit, the one. 

Large numbers were formed by grouping these ones, and small numbers 

(e.g. fractions) by partitioning these ones into equal parts. The 

operations of addition and multiplication, and the inverse operations of 

subtraction and division, were actions on these ones which joined and 

separated sets of numbers.  

Algebra was constructed by generalising number and arithmetic, and 

representing general results with letters. With input from geometry, this 

gave rise to applications within measurement, and statistics and 

probability. This is illustrated by the relationships in Figure 3. 

These relationships give a framework for Foundation to Year 9 that enables mathematics as a whole to be 

considered. This leads to major sequences and connections; for example, the principles of arithmetic are the same 

as the principles of algebra, meaning there is commonality in relationships between arithmetic and algebra. It also 

provides an overview and sequence for the connections upon which teaching should be built; for example, number 

and geometry before measurement, and fractions before numerical probability. Similarly, all strands and topics of 

mathematics have internal structures (connections and sequences) that provide the same holistic views. The YDM 

resource books use diagrams to show these structures for the strands and build lesson ideas around them.  

2.2 Big ideas 

Big ideas are mathematics ideas that can be used in many year levels and across different topic areas. Knowing 

mathematics in terms of big ideas is a powerful way to learn mathematics and knowing big ideas represents deep 

learning of powerful mathematics.  

An example of a big idea is that mathematics can always be seen from two 

perspectives – as a relationship (static) or as a change or transformation 

(dynamic). In the example in Figure 4, addition of 4 and 3 to make 7 can be 

seen as a relationship of balance: 4 joined with 3 is the same as 7; and as 

change: 4 changes to 7 by the action of +3.  

4 changes  to 7 by +3
dynamic

4 and 3 = 7
static

Figure 4  Relationship vs change 

perspective of mathematics 

Figure 3  Major connections 

Number Operations

Algebra

Probability Statistics

Measurement
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This section describes big ideas in YDM and should be read in conjunction with Appendix A. The supplementary 

YDM resource book, Big Ideas of Mathematics, provides more detail.  

2.2.1 YDM pedagogical position on big ideas 

YDM pedagogy emphasises big ideas in mathematics. Big ideas cover significant concepts in mathematics and 

have a wide effect, making them an efficient way to learn mathematics. YDM emphasises beginning a new topic 

by determining the big ideas important in that topic so they can be referred to where relevant to build 

understanding. YDM defines big ideas to have some or all of the following properties: 

1. They provide generic approaches to a wide range of ideas – they encompass viewpoints that cross 

boundaries. For example, many mathematical actions can be considered as relationship (static) and 

transformation (dynamic), as in the addition example discussed above.  

2. They apply across topic areas – they have some generic capabilities that are not restricted to a particular 

domain (e.g. the inverse relation in division between divisor and quotient also applies to measurement, 

fractions and probability). 

3. They apply across year levels – they have the capacity to remain meaningful and useful as a learner moves 

up the grades (e.g. the concept of addition holds for early work in whole numbers, work in decimals, 

measures, common fractions, and algebraic variables). 

4. Their meaning is independent of context and content – it is encapsulated in what they are and how they 

relate, not to the particular context in which they operate. For example, the commutative law says that first 

number + second number = second number + first number irrespective of content type (e.g. whole numbers, 

decimal and common fractions, algebra or functions). 

5. They are teaching approaches that apply across ideas – they have the capacity to apply to many situations. 

For example, the teaching approach of reversing (reversing the order of activity in a lesson) applies 

everywhere, including going whole to part and part to whole, shape to symmetry and symmetry to shape, 

algorithm to answer and answer to algorithm. 

Big ideas are very effective ways to learn mathematics at a deep level, for the following reasons:  

1. One big idea can apply to a lot of mathematics. This makes big ideas powerful ways to teach and understand 

mathematics. For example, part-part-whole, multiplicative comparison (double number line) and start-change-

end diagrams can solve most fraction, percent, rate, and ratio problems (i.e. they reduce cognitive load).  

2. One big idea can cover work that would need many procedures and rules to be rote learnt. For example, 

the distributive law and area diagrams can be used to understand and solve 24 × 37, 2⁄5 × 4⁄5 and (𝑥 − 1)(𝑥 +

2) problems.  

3. Big ideas are organic in that they assist later learning. Big ideas build structural connectivity across domains 

of mathematics, thus developing rich schema that can easily accommodate new ideas. For example, building 

the notion of inverse as “undoing things” and teaching the inverse relationships between +2 and −2; ×5 

and ÷5; 𝑥2 and √𝑥; 𝑝3 and 𝑝−3; (𝑝)𝑛 and (𝑝)1/𝑛; 𝑓(𝑥) = 2𝑥 + 1 and 𝑓(𝑥) = (𝑥 − 1) ÷ 2 can make it really 

easy to understand integration as the inverse of differentiation in calculus.  

2.2.2 Big idea types 

YDM identifies five types of big ideas:  

1. Global big ideas. These relate to nearly all mathematical ideas and all year levels. For example, the 

commutative principle is not a global big idea because it only refers to addition and multiplication situations; 

on the other hand, transformation and relationship is global because it refers to all mathematics, saying that 

every idea can be considered both as a change and as a relationship. 
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2. Concept big ideas. These are the meanings of ideas that are common across mathematics. For example, the 

meanings behind equals and multiplication – such meanings have large impact and can help in many topic 

areas, from operations to algebra and measurement to statistics.  

3. Principle big ideas. These are relationships where meaning is encoded in the relation of the parts, rather 

than in their content. The commutative principle (turnarounds – e.g. 1st + 2nd = 2nd + 1st) is an example of a 

principle big idea because it also holds for many contexts (e.g. whole numbers, decimals, fractions, variables, 

functions), while 2 + 3 = 5 is contentful because it only holds for 2, 3 and 5.  

4. Strategy/model big ideas. These are ways of solving exercises and problems that apply to a range of 

mathematics across year levels. For example, the part-part-total (PPT) strategy and model underpins all 

operations and is a powerful strategy in solving word problems and fraction, percent and ratio problems.  

5. Pedagogy big ideas. These are ideas for teaching that are generic in their application – they can apply to the 

teaching of many mathematics ideas. For example, the teaching approach of reversing where the teaching 

direction between teacher and student is reversed (e.g. from “what is 5 + 8?” to “what addition facts give 

answer 13?”) can apply in many situations other than addition.  

Appendix A at the end of this book lists some of the more important big ideas. A more complete list with 

descriptions is provided in the YDM Supplementary Resource 1 on Big Ideas available through the MITI online 

learning Blackboard site as a resource for schools involved in MITI projects.  

2.3 Extending YDM structure to MITI 

The three YDM pedagogy positions outlined in sections 2.1.2 to 2.1.4 regarding connections and sequences are 

important in MITI because MITI deals with deep understandings and powerful mathematics. Rich schema is the 

deepest and most powerful form of mathematics. MITI extends the YDM pedagogy to Years 10 to 12 mathematics 

where the growth in mathematical ideas requires schema. 

2.3.1 Mathematics structure 

A structural approach to teaching mathematics that involves connections and sequencing remains equally or even 

more important in MITI. In its coverage of mathematics across Foundation to Year 9, YDM has only started to build 

the structure that underlies the mathematics of Years 10 to 12 and tertiary years. As the mathematics knowledge 

to be understood grows across the years, it becomes even more important for mathematics to be seen as a 

connected and sequenced structure. Existing structure provides a framework into which new mathematics can fit 

to build a combined structure containing new and earlier ideas, which in turn can be used to accommodate even 

newer ideas. Thus students who have structural knowledge of mathematics find it easier:  

(a) to retain Foundation to Year 9 mathematical ideas, which are still the basis of much that is in Years 10 

to 12, while learning the new knowledge;  

(b) to learn, recall and solve problems with the new knowledge (in particular, they do not have to 

laboriously rote learn new materials and processes); and  

(c) to prepare for new ideas with confidence and engagement, to make sense of these ideas and know 

where they fit into the scheme of mathematics. 

Retaining ideas in the form of rich schemas that define, connect, apply and remember is even more crucial for 

the mathematics that makes mathematicians. It is the learning and thinking in this schematic form that we call 

deep learning of powerful mathematics.  

This focus on structure will be seen across both stages of MITI, although it will predominate in Stage 2, as 

discussed in the next section.  
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2.3.2 Pre-empting 

Knowing the structure of mathematics means knowing how mathematics fits together, and particularly what 

comes before a mathematical idea and what comes after. Thus, teaching mathematics in earlier years in a way 

that prepares for the mathematics to be taught in later years remains a strong part of MITI. This is called pre-

empting in both YDM and MITI and is part of the YDM pedagogy where we stress the need to teach mathematics 

in a way that makes the teaching in later years easier and builds on the teaching in earlier years (it is called 

seamless transitions from lower years to higher years in parts of this book). It is both a consequence of structure 

and an important part of building structure. 

As MITI moves into Years 10 to 12, it is important to ensure that teaching in Foundation to Year 9 prepares 

students for what they do in later years in a way that makes the later teaching and learning easier. This may 

make teaching in the earlier years a little more difficult but once started pays off in so many ways and reduces 

the time needed later. Two examples should help here: 

1. In Years 11 and 12, teaching calculus introduces the notion of limit in differentiation and integration. It would 

prevent a lot of difficulties if some simpler form of the limit idea was introduced in Years 7 to 9.  

2. In Years 9 and 10, it is common to look at trigonometry in terms of similar right-angled triangles and ratios. 

This bases trigonometry on similarity and proportion, which is a good sequence. However, in Years 11 and 

12, trigonometry is extended to circles. Therefore, while retaining the positive aspects of triangles, similarity 

and proportion in teaching trigonometry, it is important to also introduce it using circles so that Years 11 

and 12 trigonometry is made easier to learn. 

2.3.3 Holistic ideas (organic learning) 

The idea of seeing mathematics as a whole structure, not a collection of rules and definitions, is also important 

in MITI as it is in other YDM-based projects (if not more so). This can be seen in a single example. The calculus of 

mathematics in Years 11 and 12 has two actions, differentiation and integration. These actions relate to each 

other like addition and subtraction, multiplication and division, square and square roots: they are inverses. 

Seeing calculus in terms of the big idea of inverse helps calculus at all levels, including enabling students to see 

that calculating an integral is doing the opposite to calculating a differential. The idea of seeing that 

differentiation and integration are inverses, in addition to the connections of calculus to other big ideas such as 

rates and areas, is powerful whole-to-part teaching. 

This use of holistic structure has been called organic because it facilitates growth of knowledge. As will be seen 

in Chapter 4, it remains particularly important in MITI. 
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3 RAMR Teaching Cycle 

The YDM pedagogy is based on the Reality–Abstraction–Mathematics–

Reflection (RAMR) cycle (see Figure 5). This cycle is a pedagogic 

framework for planning, teaching and learning mathematics. It 

proposes:  

(a) working from student reality and local culture (prior experience 

and everyday kinaesthetic activities);  

(b) abstracting mathematics ideas from everyday instances to 

mathematical forms through an active pedagogy (kinaesthetic, 

physical, virtual, pictorial, language, and symbolic 

representations, i.e. body  hand  mind);  

(c) consolidating the new ideas as mathematics through symbols 

and language, practice and connections; and  

(d) reflecting these ideas back to reality through a focus on applications, problem solving, flexibility, 

reversing and generalising.  

The innovative aspect of RAMR is that the right half develops the mathematics idea while the left half reconnects 

it to the world and extends it. For example, whole-number place value built around the pattern of threes where 

hundreds-tens-ones applies to ones, thousands, millions, and so on, can easily be extended to metrics by 

considering the ones to be millimetres, the thousands to be metres and the millions to be kilometres.  

3.1 Basis of RAMR cycle 

The RAMR cycle is based on a philosophy of mathematics teaching and learning that has an Indigenous beginning. 

This has been extended to a pedagogical framework by adding the best of instructional strategies to the four 

sections of the cycle. It has been one of the successes of YDM. 

3.1.1 Philosophical model 

To have an approach to teaching mathematics that takes account of the cultural capital students bring to the 

classroom and negates the traditional Eurocentric nature of school mathematics, it is necessary to consider the 

nature of mathematics. Mathematics starts from observations in a perceived reality. An aspect of a real-life situation 

is selected and abstracted using a range of mathematical symbols. The resulting mathematics is used to explain 

reality and solve problems. It is validated and extended by being critically reflected back to reality. The cycle from 

reality to mathematics and back means that abstraction and reflection are creative acts; the invented mathematics 

as a structure, language and problem-solving tool is built around symbols; and the mathematics and how it is used 

in reality is framed by the cultural bias of the person creating the abstraction and reflection. The act of abstraction 

requires learners to move from reality to symbols, and the act of reflection requires learners to extend this 

knowledge by relating symbols back to reality. This cyclic process is encapsulated in Figure 6.  

REALITY 

MATHEMATICS 

ABSTRACTION REFLECTION 

Figure 5  The RAMR cycle 
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Figure 6  Relationship between perceived reality and invented mathematics (adapted from Matthews, 2009) 

Creativity, symbols and cultural bias are features of the model in Figure 6. The first, creativity, is particularly 

evident in the abstraction and critical reflection cycle. It is important to note that this cycle is similar to other 

artistic pursuits such as dance, music, painting and language as different forms of abstractions. Therefore, 

mathematics can be considered as another art form and, in theory, relates to these other forms of abstractions. 

In essence, it is possible to develop empowering pedagogy that allows students to be creative and express 

themselves in the mathematics classroom. This allows students to learn mathematics from their current 

knowledge (i.e. from the students’ social and cultural background), thereby providing agency through creativity 

and ownership over their learning.  

As a product of the abstraction process, symbols and their meanings are important features of the model since 

they connect the abstract representation with reality. However, it is common for students not to make these 

connections easily and to view mathematics as just sums with no real meaning. This is further exacerbated for 

students when they first learn algebra, and letters are suddenly introduced into mathematics without any 

obvious reason except that we are now learning algebra. Focusing on creativity within mathematics provides an 

opportunity for students to generate their own symbols to represent their understanding of the mathematical 

process. These symbol systems can then be compared to and assist in understanding the meanings of current 

symbols, symbolic language and their connection to reality. This can also lead to the teaching and learning of the 

underlying structure of mathematics, providing students with a holistic view of mathematics.  

The third feature, cultural bias, exists in all aspects of the abstraction and critical reflection cycle. The observer 

expresses their cultural bias in the way they perceive reality and decide on which aspect of reality they wish to 

focus. In the abstraction process, the form a symbol takes and the meanings attached to this symbol or group of 

symbols are biased by a cultural perspective. Finally, the critical reflection processes are underpinned by the 

cultural bias within the abstraction process and the observer’s perception of reality. If we have an understanding 

and appreciation of the cultural bias within mathematics, new innovative pedagogy can be developed that moves 

beyond some cultural biases so students can relate to mathematics but also gain a deep understanding for the 

current form of mathematics and how mathematics is used. 

3.1.2 Components of RAMR 

The philosophical relationship of Figure 6 can be deconstructed into four components: reality, abstraction, 

mathematics, and reflection. The nature of each of these components is as follows.  

Reality 

The reality component of the cycle is where students: (a) access knowledge of their environment and culture; 

(b) use existing mathematics knowledge prerequisite to the new mathematical idea; and (c) experience real-

world activities that act out the idea. The focus in this component is to connect the new idea to existing ideas 

and everyday experiences. Among the kinaesthetic, physical and visualisation activities that predominate in this 

component, it is vital for students to be provided with opportunities to generate their own experiences and 

verbalise their own actions. This generation and verbalisation provides the students with ownership over their 

understanding of the mathematical idea.  
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Abstraction 

The abstraction process is where students experience a variety of representations, actions and language that 

enable meaning to be developed that carries mathematical ideas from reality to abstraction. Representations, 

actions and language will predominantly be as in Figure 7 below; however, students should also be provided with 

opportunities to create their own representations, including language and symbols, of the mathematical idea 

initially experienced through physical activity. This allows students to have a creative experience that will, firstly, 

develop meaning and, secondly, attach it to language and symbols. The sharing of other students’ 

representations provides students with alternative views of the same idea attached to varied symbolic 

representations. Discussions on the use of different symbols enables students to: (a) critically reflect on their 

journey (enabling them to justify and “prove” their ideas); (b) understand the role of symbols in mathematics 

(enabling them to understand the relation between symbol, meaning and reality); and (c) be ready to appropriate 

(Ernest, 2005) the commonly accepted symbols of Eurocentric mathematics.  

 Representations Actions Language  

 REALITY    

 Real world (e.g. biscuits) and replicas (e.g. toys) Whole body Students’  

 Manipulatives (e.g. counters, MAB)    

 Virtual (computer replications) Hands Model  

 Pictures (e.g. drawings, diagrams, lines)    

 Symbols patterns (e.g. calculators, spreadsheets) Mind (image) Mathematics/symbol  

 ABSTRACT MATHEMATICS    

Figure 7  Abstraction sequence from reality to mathematics 

The act of abstraction requires the learner to generalise a mathematical idea from examples in the world to 

symbols in the artificial world of mathematics. It means the learner has to move from reality to symbols; for 

example, connecting the real-life situation of three children joining two children to make five children with the 

symbols 2 + 3 = 5. The recommended way to do this is to move through a sequence of representations of the 

mathematical idea from reality to abstract (as in Figure 7). The representations can be external (real-world 

activities, materials, images, pictures, language and symbols) or internal (mental images of external 

representations), with learning occurring when structural connections are made between the two (Halford, 

1993). The external representations facilitate the internal representations while accompanying language and 

actions become increasingly abstract (as in Figure 7).  

Mathematics 

The mathematics component of the cycle is where students: (a) appropriate the formal language and symbols of 

Eurocentric mathematics; (b) reinforce the knowledge they have gained during the abstraction phase; and 

(c) build connections with other related mathematical ideas. The focus is to assist students to construct their 

own set of tools (filling their “mathematical toolbox”) that will enable them to recognise and recall mathematical 

ideas from the language and symbols associated with the ideas, thus adding to their bank of accessible 

knowledge. The connections between new and existing ideas enable better recall of mathematical ideas and 

improve problem solving. It is easier to remember ideas in terms of how they are related to each other (structural 

understanding) than as many disconnected pieces of information. The ideas that help in problem solving are 

often connected peripherally to the central idea to which the problem refers.  

Reflection 

The critical reflection process is where the new mathematical ideas are: (a) considered in relation to reality in 

order to validate/justify understandings; (b) applied back to reality in order to solve everyday life problems; and 

(c) extended to new and deeper mathematical ideas through the use of reflective strategies, namely, flexibility, 

generalising, reversing and changing parameters. As well as reflecting on the mathematics they have learnt in 
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relation to the world they live in, this process involves students’ consideration of the journey they took from 

reality to mathematics via abstraction in developing the mathematical ideas. It requires reflection on what they 

learnt, how they learnt it, and why they learnt it. It also requires them to justify their outcome.  

Reflection is more powerful than it seems at first glance. It requires the learner to validate their mathematics 

learning against their everyday life, thus generating ownership of the knowledge. However, it is also a method 

of extending learning as the reflection acts on the abstracted mathematics in relation to reality. For example, 

students can reflect on 3 + 4 = 7 and see that if one addend, say the 3, was reduced by 2, then the sum, 7, has to 

be reduced by 2 to keep the equation equal, the beginning of the balance rule. The extension of knowledge 

through critical reflection can be assisted by the use of the four strategies: flexibility, generalising, reversing and 

changing parameters. 

Along with abstraction, reflection forms an important cycle (thesis-antithesis-synthesis) with perceived reality 

and mathematics. Through this cycle mathematics knowledge is created, developed and refined. Mathematical 

knowledge is created (the thesis) by abstraction from perceived reality. This knowledge is trialled within itself for 

consistency (proof) and against reality for effectiveness (application). Problems that emerge in proof or 

application (the antithesis) are used to amend the mathematics (the synthesis) and the cycle continues.  

3.1.3 Planning with the RAMR cycle 

Planning the teaching of mathematics can be based around the RAMR cycle, deconstructed into components 

that are applied to a mathematical idea. By breaking instruction down into the four parts and taking account of 

the pedagogical approaches described earlier, the cycle can lead to a structured instructional sequence for 

teaching the idea. Figure 8 briefly outlines how this can be done. Prerequisite mathematical ideas are considered 

in the reality and mathematics components of the cycle, while extensions and follow-up ideas are considered in 

the reflection component. 

 

REALITY 

 Local knowledge: Identify local student cultural-
environmental knowledge and interests that can 
be used to introduce the idea. 

 Prior experience: Ensure existing knowledge 
prerequisite to the idea is known. 

 Kinaesthetic: Construct kinaesthetic activities, 
based on local context, that introduce the idea. 

ABSTRACTION 

 Representation: Develop a sequence of representational 
activities (physical to virtual to pictorial materials to 
language to symbols) that develop meaning for the 
mathematical idea. 

 Body-hand-mind: Develop two-way connections between 
reality, representational activities, and mental models 
through body  hand  mind activities. 

 Creativity: Allow opportunities to create own 
representations, including language and symbols. 

REFLECTION 

 Validation: Facilitate discussion of the idea in 
terms of reality to enable students to validate and 
justify their new knowledge. 

 Applications/problems: Set problems that apply 
the idea back to reality. 

 Extension: Organise activities so that students can 
extend the idea (use reflective strategies – 
flexibility, reversing, generalising, and changing 
parameters). 

MATHEMATICS 

 Language/symbols: Enable students to appropriate and 
understand the formal language and symbols for the 
mathematical idea. 

 Practice: Facilitate students’ practice to become familiar 
with all aspects of the idea. 

 Connections: Construct activities to connect the idea to 
other mathematical ideas. 

 

Figure 8  Outline of the RAMR cycle 
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3.2 Pedagogies on which RAMR is based 

The RAMR cycle is related to and has been constructed from mathematics pedagogies that have been commonly 

and successfully used in mathematics for many years. Seven of these are briefly described under three headings 

as follows.  

3.2.1 Cycles, triangles and representations 

Wilson’s Activity Type cycle 

Wilson’s Activity Type cycle (see Wilson, 1976 and Ashlock 

et al., 1983) is a pedagogy used by YDC staff for many 

years with success. Wilson’s cycle specifies five steps (see 

Figure 9): (a) Initiating: teach the idea informally in real-

world situations, representations and informal language; 

(b) Abstracting: introduce the formal mathematics 

language and symbols; (c) Schematising: undertake 

activities specifically to connect the new knowledge to 

existing knowledge; (d) Consolidating: practice (games, 

practice activities and worksheets); (e) Transferring: apply 

knowledge to solve problems, and see if students can 

undertake activities that can extend knowledge to new 

knowledge without having to go through all five steps. The cycle also advocates continuous checking and 

diagnosis of students’ understandings to ensure no errors become habituated. The RAMR cycle was based on 

ideas from Wilson’s Activity Type cycle, particularly in abstraction, mathematics and reflection. However, RAMR 

has the added perspective of emphasising building from reality back to reality. 

Payne and Rathmell triangle 

As a framework, Payne and Rathmell’s (1977) triangle model relates 

real-world situations, representations, language and symbols (see 

Figure 10). Real-world situations are identified and modelled with 

body, hand and mind. The physical, pictorial and virtual materials, 

and accompanying mental-visual models, are connected to language 

and symbols, studied and reinforced as two-way connections. The 

abstraction process in RAMR is designed to cover the ideas in this 

triangle. 

The triangle model advocates an order in teaching that must follow: 

story  model  language  symbol, then work back relating all 

the parts in both directions. 

Multi-representational instruction 

This approach involves using many representations in teaching episodes (e.g. MAB, place-value charts, 

calculators and pen/paper) to relate model with language and symbol. It involves continuously linking 

representations. As argued by Duval (1999), mathematics comprehension results from the coordination of at least 

two representational forms or registers; the multi-functional registers of natural language and figures/diagrams, and 

the mono-functional registers of notation systems (symbols) and graphs. Learning is deepest when students can 

integrate registers. Multi-representations work well with the Payne and Rathmell triangle and are the basis of the 

abstraction component of the RAMR cycle. 

SYMBOL

1/3

REAL WORLD PROBLEM

Sue ate 1 third of a chocolate  bar. 

Show how much she ate?

LANGUAGE

One third

REPRESENTATION

Figure 10  Payne and Rathmell triangle 

framework for teaching fraction one-third 

Figure 9  Wilson’s Activity Type cycle 
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3.2.2 Types, levels and learner-centred principles 

Baturo/Leinhardt knowledge types 

The four components of the RAMR cycle were also a product of Baturo’s (1998) modification of Leinhardt’s (1990) 

four knowledge types: (a) entry (knowledge of mathematical ideas before instruction – from experience); 

(b) representational (knowledge of physical materials, virtual materials and pictures used to develop the ideas); 

(c) procedural (knowledge of definitions, rules and algorithms); and (d) structural (knowledge of relationships 

and concepts). All four types have to be developed in a unit of work with the final goal being structural.  

It is easy to see that these four knowledge types are similar to the RAMR components – entry is reality, 

representational is abstraction, procedural is in the first part of mathematics, and structural is in the last part of 

mathematics joined with reflection.  

Levels of instruction 

Baturo et al. (2007) identified three levels of instruction that need to be taken into account in lesson planning:  

(a) technical – becoming familiar and proficient with the use of materials;  

(b) domain – knowing what materials and what activities will provide experiences effective for learning the 

topic being taught; and  

(c) generic – knowing instructional strategies that hold for all topics. These three levels of instruction should 

be taken into account for all activities within the RAMR cycle.  

Four of the most important generic strategies have particular application to the reflection component of RAMR: 

(a) flexibility (experiencing the mathematical idea many ways); (b) reversing (teaching in the opposite direction, 

e.g. whole to a fraction and then fraction to a whole); (c) generalising (developing the idea into a generality); and 

(d) changing parameters (considering what would happen if something changed).  

As well, most other components of RAMR are also important; for example, starting from what the students know 

and are interested in, and making connections. In fact, the RAMR model is itself a generic strategy as it can be used 

with all topics. However, these are not the only such strategies. For example, continuously diagnosing students’ 

knowledge, and asking students to reflect on what they have learnt are also important generic strategies.  

Learner-centred principles 

Overall, effective mathematics teaching means taking account of good principles of teaching and learning in 

mathematics. A good set of principles has been developed from a review of the literature by Alexander and Murphy 

(1998) as follows. These should always be taken into account when using the RAMR model.  

1. Knowledge base. One’s existing knowledge serves as the foundation of all future learning by guiding 

organisation and representations, by serving as a basis of association with new information, and by colouring 

and filtering all new experiences. 

2. Situation/context. Learning is as much a socially shared knowledge as it is an individually constructed 

enterprise. 

3. Development and individual differences. Learning, while ultimately a unique adventure for all, progresses 

through various common stages of development influenced by both inherited and experiential/ 

environmental factors.  

4. Strategic processing. The ability to reflect upon and regulate one’s thoughts and behaviour is essential to 

learning and development. 

5. Motivation and affect. Motivational or affective factors, such as intrinsic motivation, attributions for 

learning, and personal goals, along with motivational characteristics of learning tasks, play a significant role 

in the learning process.  
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3.2.3 Available and accessible knowledge 

There are two ways to make errors: (a) not having the knowledge available (i.e. not having learnt the knowledge); 

and (b) having the knowledge available but not accessing it (i.e. having learnt the knowledge but not realising 

that it can be applied in the task situation). Thus, mathematics teaching needs to build strong available and 

accessible mathematics knowledge. In particular, accessible knowledge is very productive as it is a form of deep 

learning and enables performance to continue into higher mathematics. 

Teaching for accessible knowledge requires more than teaching for available knowledge. Accessing mathematics 

knowledge means knowing it on its own merits and knowing when, where and how it can be applied to task 

situations. Thus, accessible knowledge is based on mathematical ideas being held in rich schemas. As we have seen, 

such schemas have four characteristics: (a) they define – completely describe all the ways the mathematical idea 

can be thought of; (b) they connect – store knowledge so that all relationships are evident and all related knowledge 

is connected; (c) they apply – contain all the different ways the mathematical idea can be used in reality; and (d) 

they remember – organise and store all experiences students have had with the mathematical idea. 

The RAMR cycle has been designed to be effective in developing rich schema and, therefore, accessible 

knowledge. It involves abstraction and reflection and begins and ends with reality, thus ensuring mathematical 

ideas are well defined, connected, applied and experienced. It identifies with techniques particularly useful for 

accessibility such as explicitly relating the mathematical ideas to as wide a collection of out-of-school experiences 

as possible and teaching that mathematics and its symbols form a highly connected structure, a language to 

describe the world and a set of tools for solving the world’s problems.  

Overall, the secret to accessible knowledge is to do both sides of the RAMR cycle: abstract the mathematical 

idea and practise the idea but not to stop there; to draw a breath and move on to connections and reflections. In 

particular, the reflective strategies are useful: flexibility gives the students a rich set of applications (particularly 

non-prototypic activities); generalising integrates knowledge which means there are fewer things to apply; 

reversing often means that real-world instances are constructed (the best way to teach interpreting the world); 

and changing parameters builds connections. 

As well as improving applications and problem solving, improving accessible knowledge has the potential to improve 

results in testing, which is more than just repeating known procedures.  

3.3 Extending RAMR cycle to MITI 

In this section we look at RAMR’s role in expanding MITI through to Year 12, looking at structure first, process of 

inquiry second and problem solving at the end. 

3.3.1 Structure 

As argued across Chapters 2 and 3, the RAMR cycle is a great basis for MITI. RAMR enables teaching and learning 

that takes account of the structure in mathematics and assists students to have structural understanding of 

mathematics. In so doing, the cycle enables deep learning of powerful mathematics. In particular, the following 

components of RAMR are particularly important for MITI. 

1. Reality/prior experiences. Starting from the interests of the students is important because it grounds the 

new learning with the everyday structure of the students’ existing knowledge. It does not start learning from 

an artificial position where it sits alone and unconnected as classroom knowledge. This building of cognitive 

structure is an important part of Stage 2 of MITI in Chapter 4.  

2. Abstraction/body. The initial use of the body to act out the new mathematics idea builds visual imagery; 

developing a picture in the mind of how a mathematical idea works is the basis of deep understanding. We 

will look again at this in Stage 1 of MITI in Chapter 4.  
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3. Mathematics/connections. A powerful component of RAMR is the focus on connections in the Mathematics 

phase. This is based on Wilson’s Activity Type cycle (Ashlock et al., 1983) and is underpinned by the argument 

that ideas are better consolidated by being placed in a structure (that is, connected to other knowledge) 

than through practice. For deep learning, knowledge is constructed in the form of schema; for powerful 

mathematics, the structure of the mathematics has to require schematic understanding. A specific focus on 

instruction that connects is a crucial part of the power of RAMR for MITI. 

4. Reflection/validation. At the end of the cycle, the knowledge developed in mathematics is reflected back to 

the everyday life of the students, the position it came from at the start. This closing the circle, along with the 

applications and problem solving that are part of the Reflection component of RAMR, ensures all new 

knowledge learnt is brought back together and then connected to the structure of the students’ everyday 

knowledge. This prevents separation of school knowledge from everyday knowledge. 

5. Reflection/extension. This is the main component of RAMR for MITI. In this component, the teacher seeks 

to extend and deepen the knowledge of the students. This is done by focusing on the generic strategies or 

pedagogies of flexibility, reversing, generalising and changing parameters: 

(a) Flexibility seeks to attach the newly learnt idea to as wide a set of topics as possible. For example, 3⁄4 

can represent 45 minutes or 270 degrees of turn as well as 750 mm and 75%.  

(b) Reversing works to ensure that connections are in both directions. For example, 3⁄4 of 12 is 9 (whole  

part); and 3⁄4 is 12 means whole is 16 (part  whole).  

(c) Generalising requires understanding to be generic, for any situation. For example, a whole divided into 

4 equal parts is 1⁄4; a whole divided into Fred equal parts is 1⁄Fred . 

(d) Changing parameters gives an opportunity for gestalt leaps of understanding built on big ideas. For 

example, in generalised terms, adding two 2-digit numbers involves adding the ones, adding the tens 

and doing any necessary renaming. It is possible to extend this generalisation by changing parameters 

to adding metres and centimetres, hours and minutes, or algebraic addition of two variables. 

3.3.2 Inquiry 

The process by which students construct their knowledge is important. The inquiry approach builds a community 

of learning in the classroom by organising students to cooperate in investigating what has to be learnt. It involves 

co-opting the students to be complicit in their own learning, to be co-constructors of their knowledge and 

to discuss and debate without the necessity of common conclusions. It assumes this will be done in a way that is 

culturally safe with high-expectation relationships. It includes social constructivism where students construct 

their own knowledge in discussion with peers and teachers. It makes social sharing a component of individual 

learning. 

The inquiry approach involves planning lessons that continuously link different representations (e.g. symbols, 

language, models, materials and graphs) and the ideas they represent. Mathematics comprehension is enhanced 

if instruction, and learning, can coordinate and integrate at least two representations/ideas. This is the multi-

representational teaching mentioned in section 3.2.1. 

In order to co-opt students as co-constructors of knowledge, instruction needs to enable students to understand 

themselves as learners, and to involve the students in their learning as co-researchers. This includes such 

activities as teaching students to understand learning, social negotiation and research, thus allowing the students 

to monitor and measure their own learning and to regulate their own behaviour and learning actions.  

3.3.3 Problem solving 

As we move into higher level mathematics dealing with problems and applications, we have to be more specific 

with involving problems and problem solving. YDC has available a supplementary resource book, Problem Solving, 

which looks at this area in detail (available through the MITI Blackboard site). This subsection looks at what is 
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required to solve one-step and many-step problems, covering plans of attack, general problem-solving 

strategies, and strategies particular to many-step problems.  

1. Plan of attack. The basis of powerful problem solving is strong structural knowledge of mathematics, 

resilient affective traits, metacognition, and powerful thinking skills. Metacognition is the ability to control 

one’s own thinking; this means being able to monitor, coordinate, check, evaluate and modify thinking and 

make decisions. Metacognition can be codified into a plan of attack. The best plan of attack is Polya’s 

four stages:  

 See – work out what you have to do 

 Plan – make a plan to do it 

 Do – do the plan  

 Check – check your answer and see what you can learn from the problem. 

2. Problem-solving strategies. Metacognition is supported by strong thinking skills, namely, spatial or 

visual thinking, flexible thinking, creative thinking, logical reasoning, and patterning skills. Thinking skills can 

also be enacted into strategies. An effective list of strategies is as follows. 

 Verbal-logical – reread the problem; identify given, needed and wanted; restate the problem; write a 

number sentence. 

 Visual-spatial – act out the problem; make a model; make a drawing, diagram or graph; select 

appropriate notation. 

 Organising – look for a pattern; construct a table; account for all possibilities systematically. 

 Checking – generalise; check the solution; find another way to solve it; find another solution; study the 

solution process. 

 Restructuring – guess and check/trial and error; work backwards; identify a sub-goal/break the problem 

into parts. 

3. Particular strategies for multi-step problems. In multi-step problems there are two components: 

determining the steps, and determining what to do in each step. There is also an emphasis on doing each 

step in turn, finishing each step before moving on to the next, and making sure you take everything into 

account. For simpler two- and three-step problems, there are three major strategies:  

 Make a drawing – draw something useful that will help solve the problem.  

 Given, needed and wanted – determine what is given, what is needed to get you to where you want to 

go, and what is wanted (where you want to go). 

 Restate the problem – rethink the problem in your mind so it becomes easier. 

For more complex multi-step problems, three other strategies become important:  

 Break the problem into parts – check that you have not missed any parts. 

 Make a table or chart – this helps ensure nothing is missed and keeps things systematic. 

 Exhaust all possibilities – go through and do everything on a list. 

3.3.4 Conclusions 

Looking back across section 3.3, we can see that: 

(a) RAMR is flexible and powerful enough to be the basis for driving mathematics in structural terms at MITI 

level; 

(b) RAMR will remain a powerful framework into which inquiry fits and is supported, particularly in the Body 

 Hand  Mind and in Reflection; and  
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(c) RAMR enables problem solving which is specifically stated as a step in the Reflection phase and also the 

starting point for the Abstraction phase (the real-world situation).  

One of the bases of YDM is to see mathematics in three ways, and to teach to achieve these ways: 

(a) as a structure – with teaching built around schema (connections and sequencing) and big ideas 

emphasising similarities and differences between topics and their representations, and ensuring 

seamless/smooth sequencing and pre-empting; 

(b) as a life-describing language – with teaching built around ensuring that the formal notation and words 

are seen as a concise life-describing language; and  

(c) as a tool for problem solving – with teaching built around developing mathematics thinking so that ideas 

assist problem solving both within a domain of mathematics and outside domains of mathematics.  

RAMR was designed to achieve these three outcomes. More will be discussed in the next chapter. 
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4 Pedagogies, Proposals and Stages 

Having provided background and beliefs and described the RAMR planning/teaching cycle, in this chapter we 

look at MITI itself and the two stages for its implementation. For each of these stages we provide information on 

the pedagogy which, along with YDM, drives that stage. 

4.1 Stage 1: Investigations, problems and seamless sequencing of 
powerful mathematics 

As well as introducing the YDM pedagogy, this first stage of MITI focuses on the training of teachers to improve 

teaching and learning with respect to the following: 

(a) the development of mathematics as a vertical and horizontal schema of interconnected and sequenced 

ideas built around key big ideas (see Chapter 2), a rich schematic structure of big ideas that fully includes 

definitions, connections, applications and experiences; 

(b) the RAMR teaching cycle of the YDM pedagogy (see Chapter 3), bringing in the Renzulli (1976) approach 

to teaching mathematics to able students (see this chapter), changing instructional approaches from 

textbook pages of exercises to problems and investigations, and developing classroom techniques to 

get the most from these; and 

(c) the creation of engaging instructional sequences that teach lower level ideas in a way that seamlessly 

extends to higher level forms of the same idea, particularly using digital technologies to assist in 

developing these sequences, following the REAL approach to their use (see this chapter).  

To do this, Stage 1 looks at both students and teachers. For students, it needs to introduce teaching methods 

that will be positive in terms of student affect. For teachers, Stage 1 looks at ensuring the maths ideas are taught 

in a way that enables Years 7–9 teaching to connect seamlessly to Years 10–12 teaching, using inquiry methods 

of teaching mathematics (see section 3.3.2). This initially focuses on Years 7–9 but extends over Years 7–12. 

This section, therefore, overviews: (a) a special pedagogy for investigation (Renzulli triad) and its relation to 

RAMR; (b) technology use (and the REAL pedagogy); (c) teaching approaches regarding affects and investigations 

(and their implementation); and (d) implications and the plan for MITI Stage 1 PD activity. 

4.1.1 Renzulli triad pedagogy 

In the development of investigations (rich tasks), YDC has used the pedagogy of Renzulli (1976) – that 

mathematics ideas should be developed through the following three stages for able students. 

1. Motivation – base instruction on activities that will interest the students and will assist them to engage with 

mathematics. 

2. Prerequisite skills – use diagnosis to determine and then teach all necessary mathematics ideas needed to 

undertake the motivating activity. 

3. Open-ended investigation – end the teaching sequence by setting students an open-ended investigation 

based on the activity identified in Stage 1. This is to allow the students freedom to explore the activity as far 

as their interest and ability will go. 

Note: This triad was developed by Renzulli (1976) as the most appropriate way to teach mathematically gifted 

and talented students. 

The Renzulli pedagogy combined with YDM can provide insight into how to enrich and extend students in 

mathematics. We now look at this in terms of the three components of the Renzulli triad, namely, motivation, 

skills and rich tasks or investigations. 
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Motivation 

Motivation can be considered in relation to the first step in the RAMR cycle, Reality. Reality looks at 

prerequisites, local knowledge and kinaesthetic activity, with the aim of building interest and engagement by 

starting from the interests of the students and being active in instructional tasks. Therefore, the implication is 

that the motivation sought for able students must be based on a real interest of the students not of the teacher, 

and that this interest will most likely lie within experiences from the social situation of the students and their 

culture, and be reinforced with the active way the ideas are first experienced. 

Skills 

This component of Renzulli interacts strongly with the YDM pedagogy and relates to mathematics structure. If able 

students are to prosper in advanced mathematics subjects, their mathematics should be: (a) structural (or 

relational, in terms of Skemp, 1989), that is, highly connected and deep; (b) based on big ideas, with real language 

understandings that relate to models; and (c) able to reflect learning that covers all the steps in the RAMR cycle.  

1. Structural mathematics means rich schema, which requires students’ knowledge to have four components: 

(a) completely defines the mathematical idea; (b) provides all applications of the knowledge; (c) has all 

connections identified between the knowledge and other mathematics knowledge; and (d) contains 

critiqued and recoverable experiences of that knowledge. 

2. Big ideas means that students’ knowledge: (a) covers all the different concepts making up a mathematics 

big idea; (b) encompasses a strong understanding of mathematics language, particularly as a shorthand 

concise symbolic structure that tells stories and describes life; and (c) has a rich repertoire and understanding 

of models, representations, and strategies. 

3. RAMR means that, other than starting from the students’ interests, students can: (a) connect their 

knowledge across body, hand and mind activities; (b) be creative in constructing their knowledge; (c) be 

familiar with their knowledge as a result of effective practice; and (d) understand their knowledge in terms 

of the four generic Reflection strategies (i.e. flexibility, reversing, generalising and changing parameters). 

Investigations 

This component of Renzulli is very open but the students doing investigations should expect to experience the 

mathematics ideas in the investigations with all the power discussed under skills. For example, the investigation 

should provide experiences that: (a) reveal/provide structure, (b) involve the four generic Reflection 

strategies, and (c) require use of problem solving through a plan of attack and strategies.  

4.1.2 Technology use 

To develop and maintain interest and motivation, and meet the needs of the 21st century, MITI will make 

extensive use of technology to enable students to undertake 21st-century-relevant authentic tasks. Graphical 

calculators and other forms of technology can be put to use in many different ways to enhance a student’s 

learning and understanding of mathematical concepts. These are discussed in more detail in the supplementary 

MITI resource book on Technology.  

REAL learning with technology 

One often-quoted example is the use of technology to enable students to explore real-life related mathematical 

applications. This requires the student to use the technology to overcome the barriers that arise when the student’s 

current level of mathematical knowledge is not sufficient to cope with the application, however interesting and 

engaging it might be. This is a valuable method of providing extension but often not suited to all students in a class. 

Therefore, MITI proposes a new pedagogy called REAL learning with technology (Lowe, 2016). 

REAL learning with technology describes a process to link the students’ current mathematical studies with 

current issues and events in the real world. It is based on REAL as an acronym and emphasises four steps:  

Review  Explore  Analyse  Link 
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Using the technology to adapt information obtained from real-life events and developing a learning activity 

directly linked to the current program of mathematics study is a much more effective method of bringing the 

real world into the classroom. 

Four steps of REAL 

1. Review. Read widely and keep up-to-date with topical issues in both the print and electronic media to find 

topics that students might have some awareness of and find interesting. The range of media needs to be 

more comprehensive than the usual commercial sources. Mathematics teachers seeking to engage and 

encourage students to continue their mathematical studies at the highest levels need to demonstrate and 

share their own interest in mathematics by sharing insights gained from such media with students. Review 

the suggestions for wider media sources available in the MITI Technology book with an eye and an ear open 

for topics suitable for mathematical treatment by students. These may be major sporting events, isolated 

but significant events (e.g. sinking of Costa Concordia a few years ago), long-term trends such as global 

warming or local topical issues (e.g. local grand final, new stadium or road tunnel). 

2. Explore. Seek further information and possible data sources, images and interactive tools, and so on, related 

to the topic that will enable the “mathematising” of the topic. This could be in the form of tabulated data, 

diagrams to help explain the topic or interactive simulations that students could use. Web searches can be 

progressively refined as information is obtained until you find what is required. For example, during the 

swine flu epidemic of 2009 a general search for “swine flu cases” produced a number of starting points. 

Using the information produced it was possible to further interrogate websites until WHO data for the 

number of notified cases in Australia, tabulated according to the date, could be obtained as the basis for a 

student investigation. 

3. Analyse. From the available material decide which parts would be useful in the classroom. Decide if the data 

could be used in the current format or requires modification. For example, can dates included in the data be 

used in the original format or do they need to be modified to Day 1, Day 2, and so on. 

4. Link. Identify connections between current curriculum topics and the topic being investigated. Look at the 

current program to determine if the available data/picture/tool could be used in a way to develop students’ 

mathematical understanding. A dataset may be capable of being used in a variety of ways. Look beyond the 

obvious.  

4.1.3 Teaching approaches 

The success of MITI projects depends on how they are implemented and this implementation involves changing 

both teachers’ and students’ affects. As well, the more open procedures in the classroom require different 

teaching techniques from those used with textbooks, including feedback and pivotal teaching moments. 

1. Implementation. The success of MITI projects is based on teachers implementing a mathematics program 

which may require major changes in the teachers’ knowledge, attitudes and beliefs about mathematics and 

mathematics teaching. This change is best achieved when external input leads to success in the classroom. 

This means that the PD and teacher-change principles and procedures documented in Baturo et al. (2004) 

and Darling-Hammond and Bransford (2005) should be followed. Also, the processes used with teachers 

have to overcome the contradictions between research and teacher needs documented in Lamb et al. 

(2007). (This is discussed in more detail in Chapter 5).  

2. Affects. MITI projects will only be successful in terms of cognitive growth if mathematics instruction is linked 

with positive changes in student and teacher affects, teacher and school practices and community 

involvement. If students do not believe they can learn mathematics and do not have the motivation to 

continue even when they are successful at solving mathematics problems, they are unlikely to persevere to 

high-level mathematics in Years 11 and 12 (English et al., 2008). A student’s success in undertaking high-

level mathematics is critically dependent upon teacher expectations; teachers must believe that low-SES 

students can be successful in this endeavour. 
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3. Support and feedback. Having groups or individuals working on investigations is not an opportunity for the 

teacher to wait until a hand goes up. It is important to move and observe and ask questions. Then it is 

important to have questions that could support those not making progress. Finally, when the time comes 

for feedback it is important to choose an order in which groups report that maximises learning. The pedagogy 

YDM follows is: 

Anticipate, Monitor, Select, Sequence, Connect (Smith & Stein, 2011) 

Anticipation is before the lesson where the teacher prepares for all the questions and errors that will require 

support. Monitor and select are where decisions are made about feedback. Sequence is the order of feedback 

– students who make less progress before those who are successful. Finally, connect is to remind teachers 

to relate the investigation back to their normal teaching. All of these are discussed in the MITI Stage 1 PD 

days – see section 4.1.4. 

4. Pivotal teaching moments. These are points in a lesson where there is an opportunity to use a students’ 

comments/questions to draw an important point from students’ activities. YDM focuses on three forms: 

Anticipated, Pedagogy-based, Unanticipated 

As expected, unanticipated is the most difficult to handle, anticipated is when your experience and 

knowledge expects an opportunity, and pedagogy-based is when you have designed the lesson to maximise 

chances of a useful comment/question at certain times. This will be discussed in section 4.1.4. 

4.1.4 Implications and Stage 1 PD activity 

This section discusses the implications of the above and summarises the proposed PD activity. 

Implications 

The discussion above with respect to Renzulli and teaching approaches is a major part of the PD days for MITI 

Stage 1. However, three interactions important for enrichment and extension are worth highlighting. 

1. Focus of activities and investigations. The focus of the mathematics within the Renzulli components of skills 

and investigations has to be, as far as possible, based on a genuine interest of the students and developed 

in a way that maintains interest. This means the Renzulli first component, motivation, is particularly 

important.  

2. Depth of knowledge from normal mathematics teaching. Effective MITI teaching should build deep 

knowledge within which new ideas can be easily structured. This means the following:  

(a) strong diagnosis to detect weaknesses and rebuilding of knowledge from first principles where there is 

little understanding; 

(b) smooth seamless progressions of ideas, ensuring all meanings are included;  

(c) strong repertoires of models and strategies, and not accepting correct answers from rote-learnt 

processes without understanding of underlying knowledge;  

(d) implementation of student-centred practices with an acceptance that students have to construct their 

own knowledge by looking for similarities and differences in activities; and  

(e) high expectations for quality knowledge and the understanding that enrichment and extension are 

more than adding an investigation to existing rote teaching. 

3. Complexity in investigations. It is important to construct and use investigations that are:  

(a) multi-representational in terms of integrating models and representation, but also multi-topic in terms 

of bringing many ideas together to reach solution (“built in” not “bolt on”);  

(b) challenging to the point of failure for many students but enabling progress for all students; and  

(c) bridging affect, skills and reflection, particularly in terms of technical, domain and generic knowledges. 
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Proposed Stage 1 PD activity 

The goals for the PD in MITI Stage 1 are to have teachers who can use YDM pedagogy and Renzulli to: 

(a) identify, modify, construct and effectively teach investigations and problems appropriate for their students 

in a manner that helps build powerful mathematics ideas;  

(b) build student motivation, confidence and understanding as students move from lower years to and 

through high-level mathematics in Years 10 to 12, in particular by using digital technologies; 

(c) identify and understand the structures of high-level, powerful mathematics with respect to sequences, 

connections and big ideas, and examine Years 7–9 teaching to ensure sequencing to Years 10–12 is as 

seamless as possible; and 

(d) build these structures and develop their strength with respect to recalling mathematical ideas, solving 

problems and laying the foundation for later learning. 

The resources available in Stage 1 are: (a) this MITI Overview book; (b) a collection of 45 investigations designed 

to cover all topics across Years 7 to 9; (c) an initial collection of ideas for teaching with technology and seamlessly 

sequencing topics for the transition from Years 7–9 to Years 10–12; (d) supplementary YDM resource books on 

big ideas, problem solving and literacy in mathematics; and (e) a QUT Community Blackboard site.  

The program for the Stage 1 PD workshop days will be developed for each cohort and will include identifying 

good tasks, Renzulli’s ideas, modifying and constructing tasks, and developing sequences for teaching maths 

seamlessly from Years 7–9 to 10–12. 

4.2 Stage 2: Deep applications in futures contexts 

As well as continuing with the YDM pedagogy, this second stage of MITI focuses on the training of teachers to 

improve teaching and learning with respect to the following: 

(a) the building of big ideas through model-based structured sequences of instruction across year levels 

and the placement of mathematics ideas into more global structures (which we call superstructures) to 

allow for more seamless learning, holistic recall and relationship to effective schematic/organic learning; 

(b) the extension of the YDM RAMR pedagogy to a double RAMR model as a pedagogical structure to model 

the development of the mathematics that is built on symbol structures that, in turn, come from 

abstraction of number and arithmetic; 

(c) the relationship between applications and understanding underlying mathematics, providing real and 

authentic contexts to powerful mathematics in order to balance mathematics understanding as 

worthwhile in its own right with mathematics understanding as a valuable tool in the world of 

applications and employment opportunities; and  

(d) the identification of the mathematics on which 21st-century activities and applications are based, 

particularly those related to technology and mathematics content covered in the highest level 

mathematics subjects, and to make this mathematics visible to students in a manner that enables deep 

learning of the mathematics and strong capacity to understand applications; and to connect this 

mathematics to learning in the wider STEM field (science, technology, engineering and mathematics). 

Thus, this second stage focuses on applications to provide motivation and to give insight into the deep and 

powerful mathematics knowledge needed to be successful in Years 11 and 12 advanced mathematics subjects, 

and to continue this success on to university.  

This section, therefore, looks at deep learning and the plan for PD in MITI Stage 2. It covers (a) structured 

sequence theory and its implications; (b) an extension of RAMR to double RAMR; (c) pre-empting and 

superstructures (extension of big ideas); and (d) the plan for MITI Stage 2 PD activity. 
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4.2.1 Structured sequence theory 

Building big mathematics ideas 

The framework for learning used in YDM projects is based on a theory (Warren & Cooper, 2009) for building big 

mathematical ideas. This theory is built around understanding of mathematical ideas being the ability to move 

between four representations of these ideas: (a) symbols; (b) language; (c) physical, virtual and pictorial; and (d) 

graphical representations (if they are appropriate). It also involves being able to move between various models 

of these representations such as set, number line, array, and so on.  

Warren and Cooper’s theory argued that mathematics knowledge growth for big ideas is through structured 

sequences across models/representations not within a model/representation. It also argued that, if the 

foundations are well learnt, there is acceleration in knowledge growth with reduced time having to be spent on 

learning, which can be used for remediation in AIM or deeper learning in MITI. 

Thus, Stage 2 of MITI, with its focus on big ideas, requires us to do the following: (a) look wider in terms of 

pedagogy, to vertical curricula (structured sequences) and to the use of technology; (b) look deeper in terms of 

how mathematics topics grow from Years 7 to 12; and (c) be cleverer in developing Years 7–9 mathematics 

teaching that enables connections and sequences to be identified that make it easier to teach Years 10–12 

mathematics with concomitant savings in time. 

Components 

The theory argues that these structured sequences have the following properties.  

1. Isomorphism. Effective models and representations have strong isomorphism to desired internal mental 

models, few distracters, and many options for extension. In other words, these models/representations 

grow with the idea – for example, 3 × 4 is an array which can grow into the area model which is the basis of 

multiplication of larger numbers (7 × 23), fractions (4⁄5 × 2⁄3), and algebra ( 𝑥 (𝑥 + 2) ).  

2. Sequence. Sequences of models/representations develop so there is increased flexibility, decreased overt 

structure, increased coverage and continuous connectedness to reality. For example, the balance model for 

equations moves from a physical balance to a pictorial balance to an abstract balance that can handle 

division and negatives. 

3. Nestedness. Ideas behind consecutive steps are nested wherever possible. That is, later thinking is a subset 

of earlier. For example, the first understanding of equals should be “same value as”, and the second 

understanding should be the result of the calculation which is a particular form of “same value as”. That is, 

the meaning of equals in 4 + 2 = 6 is nested within 4 + 2 = 5 + 1, so 4 + 2 = 5 + 1 comes first.  

4. Integration. More complex and advanced mathematical ideas can be facilitated by integrating models. For 

example, solving algebraic equations is a combination of number-line understanding of inverse operation 

and balance-beam understanding of the balance rule. However, some complex and advanced ideas may 

require the development of superstructures if complexity leads to compound difficulties. For example, the 

compensation principle for addition is to do the inverse to the other number (e.g. 8 + 5 = 10 + 3 by adding 

and subtracting 2), while the compensation principle for subtraction is, simplistically, the opposite (e.g. 

14 − 6 = 18 − 10 by adding 4 to both numbers). This opposite difference between them can cause confusion 

and, thus, is called a compound difficulty. However, if a superstructure of understanding is built around 

subtraction as the inverse of addition, and division as the inverse of multiplication, it is almost self-evident 

that there has to be an opposite process for subtraction in relation to addition.  

5. Comparison. Abstraction is facilitated by comparison of models/representations to show commonalities 

that represent the kernel of desired internal mental model. In simple terms, 2 + 3 = 5 makes more sense 

when seen in joining counters (set model) and steps along a number track (number-line model.) 
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Implications 

The implication of this theory is that learning is enhanced and accelerated if instruction takes account of the 

vertical sequences in mathematics topics. Early trials of sequences have shown that the first stages of a sequence 

(covering the early years of the sequence) have to be completed slowly and carefully to build the connections 

that frame out the big mathematical ideas. Then the later stages (covering the later years) can be accelerated to 

cover the idea quickly, often in gestalt-like leaps of understanding. This leads to the development of holistic ideas 

or superstructures which enable deeper understandings of the original parts.  

Thus it is important that Years 7–9 and 10–12 are considered together. This ensures that the ideas in Years 10–

12 are pre-empted by the ideas in Years 7–9. A slow and careful start in Years 7–9 can mean a quick finish in 

Years 10–12, and a saving in time that can be spent on developing deeper understandings. It is the intention of 

MITI to use Stage 2 to set up Years 7 to 12 sequences that will make time savings in Years 10–12.  

4.2.2 Deep learning and double RAMR 

Summary of RAMR model 

The RAMR model was developed from a philosophical position with regard to the creation of mathematics; that 

mathematics knowledge was created through the ontological relationship between reality and mathematics, and 

that mathematics is a symbolic, culturally biased system creatively abstracted from, and then reflected back to, 

reality (Matthews, 2009) – see discussion in section 3.1.1.  

From this philosophical relationship, the YDM Reality–Abstraction–Mathematics–Reflection (RAMR) cycle 

pedagogy was developed (see Figure 5 at the beginning of Chapter 3 – repeated below right). This cycle has four 

stages and two sides or halves:  

(a) Reality – working from reality and prerequisites;  

(b) Abstraction – moving from everyday instances to mathematical ideas and 

forms through an active pedagogy and creativity (kinaesthetic, physical, 

virtual, pictorial, language, and symbolic representations or body  hand 

 mind);  

(c) Mathematics – consolidating the new ideas through introducing formal 

language and symbols, practice and connections; and  

(d) Reflection – validating and extending these ideas through a focus on applications, problem solving, 

flexibility, reversing, generalising and changing parameters.  

Innovatively, the right half of the RAMR model develops the mathematics idea while the left half reconnects it 

to the world and extends it.  

Deepening the RAMR model 

The RAMR model was bolstered by the integration with other pedagogies. Learners who completed all RAMR 

stages acquired strong schematic and, therefore, deep understanding of the ideas being taught. However, deep 

and powerful mathematics is based on big ideas and second-level abstractions. Many big ideas are based on 

principles (the abstract schema of Ohlsson, 1993) where meaning lies in the relationships between components 

not the components themselves (e.g. the commutative principle). Because of this, big ideas and principles are 

often second-level abstractions (and reflections) of the previously abstracted ideas. For example, arithmetic is a 

result of abstracting objects to operations and numerals, while algebra is the result of a second-level abstraction 

from arithmetic (operations with numbers/numerals) to algebra (letters and variables).  
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To meet and understand the nature of deep mathematics and 

how it is learnt, YDC proposes the creation of an extension of the 

RAMR cycle to the double RAMR cycle as illustrated in Figure 11. 

The double cycle shows, for example, how reality (objects and 

actions) is abstracted to the mathematics (in this case, arithmetic) 

which in turn is abstracted again to the deeper mathematics 

(algebra), with reflection moving backwards from deeper 

mathematics (algebra) to mathematics (arithmetic) and from 

mathematics (arithmetic) to reality (objects and actions). Some 

very advanced mathematics could be a result of three (or more) 

levels of abstraction.  

The double cycle illustrates the difficulties of high-level or deep 

and powerful mathematics: it takes two (or more) abstractions; it is distant from reality; and it relies on success 

at the first level (previous levels) of abstraction. This must be taken into account when teaching mathematics in 

Years 7 to 12. Some ideas can be developed in one level of the RAMR cycle, but others may need two levels. In 

the latter case, the questions are: Do the students know the first level? Has this been properly abstracted? Is their 

knowledge of the first level strong enough to bear a second level? 

4.2.3 Pre-empting and superstructures 

Pre-empting 

Pre-empting is part of YDM’s vision for sequencing. Mathematics is best understood as a structure of connections 

and sequences. For example, fractions are connected to division and division has a sequence that covers: 

meaning of division  basic facts  algorithms/multi-digit division  decimals/fraction division  algebra, and 

so on. The role of division with regard to fractions helps teach fraction ideas. For example, (a) 1⁄7 is less than 1⁄3 

because dividing by 7 gives a smaller amount than dividing by 3; and (b) division of fractions has to be taught by 

the most powerful division idea, multiplication by inverse or reciprocal. 

This has two implications: (a) it is important to ensure that sequences are seamless and move as easily as possible 

from lower to higher level knowledge; and (b) most mathematics ideas will be in a sequence and it is efficient to 

ensure that the sequence helps with learning. There are two aspects to sequencing that depend on position in 

the sequence. First, lower steps prepare for later steps (pre-empting) and, second, later steps consciously build 

on the earlier steps (building schematic structure). This is why we advocate, for example, never to restrict 

multiplication by 10 for whole numbers to the rule “add a zero” because it does not apply to decimals, the next 

step in the sequence. 

Pre-empting is therefore a very powerful pedagogical point. We advocate that all teaching in lower levels pre-

empts the teaching in higher levels. This often means not taking shortcuts at the lower levels. With respect to 

MITI, it means looking at the mathematics needs of Years 10–12 when deciding how to teach Years 7–9. This 

means looking not just at content but also at the models and contexts used. The obvious example is trigonometry 

being taught in relation to the circle as well as in relation to similar right-angled triangles. This is because similar 

right-angled triangles has been taught earlier and so should lay the foundation for sine, cosine and tangent, and 

in Years 10–12 use of trigonometry is related to circles. By doing both in Years 7–9, a teacher builds on the past 

and prepares for the future. 

Superstructures 

Superstructures are an important mathematics structure in terms of student learning. They follow on from pre-

empting and big ideas and are part of enabling schematic learning. They are also known as encompassing big 

ideas and relate to what Skemp (1976) called the organic nature of what he called relational (and what we call 

structural) mathematics. So we argue that there is the following sequence in terms of structures in mathematics: 

Figure 11  Double RAMR cycle 
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Overall, superstructures are webs of mathematics knowledge in which new mathematics ideas can fit. They are 

organic in that they assist learning by having the mind prepared for the next ideas. A superstructure web contains 

big ideas but can have other less complete structures. A superstructure containing the algebraic ideas from 

arithmetic in a manner that the main structures are covered is an excellent idea of what a superstructure is and 

what it can do. 

An example of a superstructure is described below for the concept of percent. It is designed so that if the 

superstructure is known, it is easy for students to understand and calculate with respect to the three types of 

percent problems: (a) What is 23% of $90? (b) If 23% is $90, what is the total cost? and (c) What percent of $90 

is $17? To do the above, the percent superstructure would have to include the following. 

1. Direct lines of development such as (a) percent as a fraction (whole  part where there are 100 parts); 

(b) percent as a decimal number (percent is hundredths so whole numbers have to relate to percent by × 

and ÷ 100); and (c) percent as a rate (interest per each one hundred dollars). 

2. Difficulties with the direct lines such as from first problem type (23% of $90) and second problem type (23% 

is $90 ) for students to automatically write 23% as 23/100. 

3. Earlier and later activities in relation to the direct lines such as sharing division, concepts of fractions, 

decimal measures, understandings that multiplication is normally rate by number, and role of formula 

percentage = percent × amount.  

4. Associated ideas such as (a) integrating fraction and ratio and extending to percent (2⁄5 fraction part, 3⁄5 

other part, and 2:3 ratio; and (b) multiplicative structure of the decimal number system that means ones for 

whole numbers relate to 100 as percent.  

5. Things that are different or don’t fit in such as (a) percent as a fraction being inflexible (denominator is 

always 100 which makes equivalence difficult); and (b) inverse relation by denominator size not applying. 

6. Models as well as definitions and actions, such as (a) the P-P-W model, (b) the double number line model, 

and (c) the change arrowmath model as below. 

   

 

7. Big ideas that apply to the superstructure such as (a) the part-part-whole big idea (the big idea that covers 

all part-whole situations); (b) the relationship vs change big idea (percent can be seen as a relationship and 

a change); and (c) the triad big idea (since there are three parts to percent problems, P = % × A, there are 

three problem types). 

Another example of a superstructure is the number system with PV positions in mathematical notation. This 

superstructure would include: 

1. A focus on one – as the basis of groups, singles and parts (and depending on point of view). 

2. The place value structure for whole numbers – grouping to left, one is right-most digit, multiply and divide 

by 10 by moving place values left and right, role of zero, and pattern for larger place values. 

P P

W % 100

$ percentWhole
Amount

Part
percentage
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3. The place value structure for decimal numbers – role of decimal point, determining place values (symmetry 

around one), similarities and differences to whole numbers, errors that can emerge from simplistic teaching 

of whole numbers, and prevention of errors. 

4. Placing mathematical notation into this superstructure and maintaining role/position of one, flexibility 

(anything can be a one), multiplicative structure (e.g. 100 as 1 and 101, 102, 103 and so on as whole number 

place-value positions; and 10-1, 10-2 and 10-3 and so on as decimal place-value positions). 

5. Other topics that integrate/connect to number structure. 

4.2.4 Stage 2 PD activity 

Hidden applications 

It has been said that a mobile phone is $10 worth of materials and a set of mathematics algorithms and that it is 

the mathematics that makes the phone more expensive. In a similar way, the internet and social media are all 

backed by mathematics and are the places that mathematicians now work. For example, the successful Angry 

Birds app is based on understanding the mathematics of parabolas as a way of explaining how the birds move 

through the air. The app would not be possible without understanding this mathematics. 

Thus, much of what is interesting in the world is based on mathematics, but a mathematics that stays hidden. 

Making these applications visible is an excellent way of teaching mathematics and making this teaching 

motivating. This will be a major part of the PD in Stage 2. 

Proposed Stage 2 PD activity and resources 

The goals for the PD in MITI Stage 2 are to have teachers who can: 

(a) identify and understand how mathematics ideas develop through abstract symbols from lower level 

ideas that relate easily to real-world situations to higher level ideas that can exist only in the 

mathematician’s mind;  

(b) understand the structures (patterns and relationships) that enable mathematics to exist outside of 

normal reality, yet provide the underpinning to that reality; 

(c) build mathematics ideas across year levels and topics, and gain generic understandings of how new 

mathematics can be added to existing knowledge with least difficulty and how this can be placed within 

a global understanding;  

(d) maintain students’ interest, motivation, confidence and understanding as they complete high-level 

mathematics subjects in order to increase participation in STEM subjects in tertiary institutions; and  

(e) build the above through strong use of digital technologies. 

To help achieve these goals, the structure of MITI was designed so that teachers can: (a) use the time gained by 

the pre-empting of topics in Stage 2 during Stage 1 to support the increased depth of Years 10–12 mathematics 

topics; (b) present topics in a meaningful context and allow students to investigate applications of curriculum 

topics in a meaningful way; and (c) connect applications to the mathematics that is hidden in the applications. 

The resources available, and being developed, include: (a) the resource books from Stage 1; (b) a collection of 

teaching ideas for pre-emptive transition from Years 7–9 to Years 10–12 with use of technology where 

appropriate; (c) a collection of ideas on futures-oriented industry applications of mathematics and how to use 

them to teach mathematics; and (d) a QUT Blackboard Community site. 

As for Stage 1, the program for the Stage 2 PD workshop days will be developed for each cohort and will focus 

on constructing ideas to meet the needs of the schools involved. 
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5 Implementation 

Like other YDC projects, the resources for MITI are written as exemplar ideas to support the pedagogy and the 

PD. MITI is conceived as a project focusing on training teachers in enrichment and extension, producing effective 

senior school mathematics teachers. Therefore, the implementation of MITI with teachers is central to the 

success of MITI. The resources exist as a basis for teacher activity and support for planning and development. 

The teacher is the central point of learning; the resources exist as a starting point for teacher activity that is 

developed for the particular needs of the teachers’ classes. 

This chapter looks at factors with regard to implementation: school change and leadership, teacher knowledge, 

training provisions and curriculum implications.  

5.1 School change and leadership 

Changing the teaching in schools requires a change at teacher and school level. In particular, MITI could require 

teachers to change from textbook “explain and practice” to inquiry/constructive teaching approaches. This 

requires effective and pertinent PD and leadership for change.  

5.1.1 PD and teachers’ practices 

YDC sees PD and changing teachers’ classroom practices as being a cycle of affective readiness for change, 

pertinent external input, effective classroom trials, positive student outcomes, and supportive reflective sharing 

that leads to further readiness (see Figure 12).  

 

Figure 12  The YDC effective PD cycle (adapted from Clarke & Peter, 1993) 

We acknowledge the importance of the interaction between researcher input and teacher need and readiness 

for this input, and the role of success (in terms of student outcomes) when trialling new ideas. We recognise that 

positive student responses along with initial readiness are crucial to successful change and that these are 

facilitated by: (a) pertinent, relevant and innovative ideas and resources at input (the MITI resources and PD 

workshops); (b) just-in-time support before and during classroom trials (assistance with planning, visits to model 

teaching approaches and provide feedback on teaching); (c) data gathering in an action-research process during 

classroom trials that can be seen as positive in terms of student outcomes; and (d) opportunities for teachers to 

share their successes and to attribute them to their ability. We also recognise the important role of the principal 

(and other administrative staff) and the local community. Without the support of the principal and other senior 

administrators, few if any interventions succeed in changing school practices. The same is true without the 

support of the local community. 
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We recognise that input through resources and PD workshops is a long way from student outcomes. Thus, for 

the project to be transformational within schools and improve student outcomes in mathematics, it requires six 

tiers of interaction, namely: (a) the community; (b) external researchers (YDC staff); (c) systems; (d) school 

administrators (principals and senior administrators such as heads of department and/or heads of curriculum – 

HODs and HOCs); (e) classroom teachers; and (f) students. YDC staff have control over resources and PD and, 

through visits, some involvement in school policies and classroom teaching. However, much of the teaching that 

affects student outcomes will be undertaken by teachers without involvement of YDC staff. It is this teaching that 

determines the central outcome of student success that, in turn, determines effectiveness of intervention. This 

distance between YDC staff and student outcomes gives importance to other people, meaning we need to 

consider: (a) key people in delivery (particularly principals, administrators and teachers); (b) parents, carers and 

other community members; and (c) students.  

5.1.2 School change and leadership cycle 

The provision of new mathematics teaching ideas is often insufficient for sustainable improvement in 

underachieving students’ learning of mathematics. The new ideas have struggled to have positive effects when 

low attendance and negative behaviour are endemic across a school, when school practices and learning spaces 

disengage students, when positive partnerships are not formed between teachers and their teacher aides, when 

classrooms do not involve community leaders or acknowledge local knowledge, and when teachers do not 

believe the students are capable of the work. On the other hand, the ideas have been successful when they have 

been integrated into whole-school changes that challenge attendance and behaviour, integrate and legitimise 

local community knowledge, build in practices to support the culture of the students, and change teacher 

attitudes towards and relationships with the students. Thus, the MITI project is much more than a set of new 

teaching ideas; it integrates: (a) a particular teaching–learning approach to mathematics designed to empower 

students within their culture; and (b) an approach to PD and school change designed to facilitate change to 

support community involvement and student engagement.  

The MITI approach to school change and leadership is based on the belief schools can only enhance mathematics 

learning with a program that focuses on mathematics and on school change together. In simple terms, we believe 

schools should see themselves as part of, not apart from, the communities in which their students live, and should 

see their role in terms of YDC’s vision, as growing community through education. We believe school change can 

have a profound effect in creating emancipatory environments that actively seek to improve the educational 

outcomes and life chances for Aboriginal, Torres Strait Islander, low-SES, and indeed all students, and strong school 

leadership plays a critical role in acknowledging the existence of this student excellence. 

 
Figure 13  Cycle of school change and leadership 

YDC has been influenced by the philosophy and success of the Stronger Smarter Institute, which argues that 

school change and leadership cycles through four requirements (see Figure 13): community–school partnerships; 

local leadership; positive student identity; and high expectations. It aims to develop not just new capabilities but 
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also shifts in thinking individually and collectively. Maintaining the cycle of the four requirements ensures 

sustained growth towards enhanced learning. It creates and sustains emancipatory environments that enhance 

the opportunities of the students who attend, and challenges mechanisms and processes that continue to 

produce disengagement among many students within the schooling system.  

5.2 Teacher knowledge 

Low-SES students and, particularly, Indigenous students, tend to be holistic in learning style, moving from whole 

to parts, and not aligned with traditional procedural/algorithmic teaching which moves part to whole. To take 

advantage of this, the approach to mathematics teaching advocated in MITI (and in YDM that underlies it) focuses 

on big ideas (concepts, strategies and principles), vertical sequencing (from junior to senior secondary for MITI), 

and the RAMR cycle. However, this is a teaching approach that requires a lot from teachers – understanding of 

mathematics structure, use of technology, investigations and applications, active pedagogy and classroom 

control of behaviour. The MITI pedagogy also relies on teachers making decisions as to instruction themselves, 

based on their understanding of mathematics and their knowledge of the individual students. MITI provides 

teaching ideas and activities but not in the form of scripts or “recipes”. 

5.2.1 Shulman’s knowledge types 

MITI pedagogy therefore requires teachers to know all 

three of Shulman’s knowledge types for effective 

mathematics teaching: subject matter (knowledge of 

mathematics content in terms of how it is structured, 

sequenced and connected), pedagogic content (knowledge 

of how to teach mathematics) and lesson planning (general 

knowledge of how to organise and run a lesson – includes 

behaviour management). Figure 14 illustrates these three 

knowledge types. To facilitate this, the activities of MITI are 

designed to build the capacity of teachers. However, in the 

past, it has taken time for teachers to come to terms with 

what is required to effectively implement a MITI-type 

mathematics program.  

Similar to teachers, teacher aides need subject-matter, pedagogic-content and lesson-planning knowledge. We 

believe in providing teacher aides with the same PD as the teachers and giving them the same resources. This 

does not mean simplification, because the highest quality knowledge is required for one-to-one tutoring as well 

as one-to-many teaching. 

5.2.2 Building capacity 

To build the capacity of MITI project schools to teach mathematics 

effectively, the plan consists of four steps (as in Figure 15):  

(a) development of mathematics resources (with appropriate tests),  

(b) provision of PD and school support,  

(c) classroom trials of resources and teacher feedback on 

effectiveness, and  

(d) student testing at the start and end of the trials.  

The teacher feedback and any test results are used by YDC staff to modify 

materials. Thus in all MITI projects, YDC staff always plan to: (a) write or 

refine mathematics resources, (b) provide PD, and (c) visit each school to 

meet teachers and provide school-specific PD if this is part of the 

requested program. 

Figure 14  Shulman’s knowledge types 
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5.2.3 Teacher feedback 

For quality control, to make the resources more effective and to enhance theory, YDC encourages all teachers 

trialling the MITI material to keep an annotated plan (or reflective journal) of what they do and their students’ 

responses. Both the plan and the record of the students’ responses will help the teachers and the researchers. 

Teachers who trial new ideas and record how they go will get much more out of the trials. They will have 

systematic information on whether the new ideas are worthwhile, and information on how their teaching is going 

and how their practices could be improved. It takes time to become expert with a new approach and an action-

research view of what is happening really helps. It is effective in improving teacher knowledge. 

It is also important for such data gathering and reflection to be done as a group; YDC recommends schools set 

up communities of practice, groups where teachers can get support for their trials and can reflect on what 

happened together. For example, when physical materials were introduced in primary classes in the 1970s and 

80s, there were often difficulties because students were not used to working other than in rows with worksheets 

or textbooks; they did not know how to behave, became excited with the material and out of control. However, 

after being given a chance to play with the material and having been taught how to act in groups with material, 

the new approach was found to work. 

5.3 Training provisions 

The focus of the MITI project is to evaluate and refine the enrichment and extension pedagogy, the tasks, and 

the PD workshops by studying teachers’ and students’ reactions to them in terms of achieving depth of 

mathematics understanding. This requires trials in classrooms by teachers who know the tasks and the pedagogy 

on which they are based. The model of PD and teacher change followed by YDC (see Figure 12 in section 5.1, and 

also Baturo et al., 2004; Lamb et al., 2007) is that a new approach to teaching is successful if:  

(a) teachers believe there is a need to change their pedagogy;  

(b) motivating PD is provided showing a new approach;  

(c) teachers trial something of this new approach and find it successful; and  

(d) teachers believe, on reflection, that this success is due to the effectiveness of the new pedagogy.  

Thus, we believe implementing MITI successfully in schools requires teachers to be interested in changing their 

present pedagogy to MITI; to receive enthusing PD on MITI that convinces them they need to, and can, change; and 

to be supported in their first trials of the MITI pedagogy. 

5.3.1 Implementation structure 

In view of the above, to set up the implementation of MITI in schools, YDC does the following: 

1. Resources – provides all schools with this Overview book, the extension tasks and the other resources for 

Stages 1 and 2 as outlined in Chapter 4. 

2. PD support – provides four teachers (called trainers), and principals in certain sessions, with sufficient PD to 

be able to use the resources. These teachers then train the other teachers in their school.  

3. Online support – provides all schools with online support in the form of a website with extra resources, a 

discussion forum, and a helpdesk to answer questions sent by teachers. 

4. Action research – provides PD on how to use an action-research approach to trialling MITI resources so 

teachers can learn from the trials and provide feedback to YDC on quality of resources, PD and online 

support. 

This would normally be six or more days of PD per year (and up to nine days if MITI is the only training being 

provided). The PD for each stage of MITI follows the plans outlined in Tables 1 and 2 in Chapter 4.  
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5.3.2 Additional services 

There is more certainty of success with MITI if there are also in-school sharing experiences and in-school support, 

particularly to support the trainers. MITI training focuses on mathematics, mathematics education, and lesson 

planning. This requires a lot from the teachers and is difficult for trainers to provide in a rushed school situation.  

Therefore, YDC can provide, at extra cost, the following additional services. 

1. Additional trainers. Schools can negotiate for more than four teachers to become trainers. 

2. Expert practitioners. Schools can negotiate for expert practitioners to visit their school, support the trainers, 

and work with the teachers in classrooms (modelling teaching, planning, observing, and providing after-school 

special PD). 

3. Teacher aides. Schools can negotiate for special training for their teacher aides so that they can assist in the 

instruction. 

4. Other projects. Schools can negotiate for teachers to be trained in YDC’s basic training (YDM teacher 

development training) and YDC’s remedial training (AIM or XLR8) as well as MITI. There can be cost 

reductions in integrating the basic, remedial and extension materials and pedagogies. 

5.4 Cultural implications 

An important component of MITI is to take account of the cultural differences between students’ culture and the 

middle-class Western culture of the school and to ensure there is a focus on school change and community 

involvement in relation to the PD and other support sessions. This section focuses on cultural implications. The 

MITI project aims to improve mathematics performance of all students. This includes students who may not 

reflect the dominant culture of both school and Australian society, in particular, students who are Indigenous 

and low SES. 

5.4.1 Indigenous students 

The underachievement of Aboriginal and Torres Strait Islander students is, in part, a consequence of being part 

of a dispossessed people who have been considered by the dominant culture as primitive with no value for a 

modern society. This has implications for the way mathematics is taught to Aboriginal and Torres Strait Islander 

students. The devaluing of Indigenous cultures still continues today; the notion perpetuated by the education 

system that humankind evolved from hunter-gatherers to technologically advanced societies does not provide a 

sense of pride for Indigenous students about their culture. It ignores the reality that Aboriginal and Torres Strait 

Islander people have powerful and sophisticated forms of mathematical knowledge that enable the complexity 

evident in total ecosystems to be understood. It can lead to disengagement and non-attendance. 

Aboriginal and Torres Strait Islander students predominantly come to school with a home language which is not 

standard English and with knowledge, skills, and patterns of interaction that are not appreciated by schools and 

do not match what facilitates success in school. This mismatch is particularly evident in the way mathematics is 

taught in schools. Aboriginal and Torres Strait Islander students tend to be active holistic learners, appreciating 

overviews of subjects and conscious linking of ideas (Grant, 1998). In fact, Indigenous people have been 

characterised as belonging to high-context culture groups using a holistic (top-down) approach to information 

processing in which meaning is extracted from the environment and the situation. In contrast, mainstream 

Australian culture is characterised as a low-context culture and uses a linear, sequential building block (bottom-

up) approach to information processing in which meaning is constructed (Ezeife, 2002). School mathematics is 

traditionally presented in a compartmentalised form where the focus is on the details of the individual parts 

rather than the whole and relationships within the whole, a form of presentation that disadvantages Aboriginal 

and Torres Strait Islander students.  
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5.4.2 Low-SES students 

Historically, educational institutions have favoured higher to middle-class backgrounds, beliefs and practices. 

This is due to a number of factors including the history of the purpose of schooling across its development and 

the socio-economic backgrounds of the majority of teachers and curriculum developers (Meadmore, 1999). As 

such, there are pre-existing patterns of communication and interactions (or discourses) endemic to education in 

Australia which are not favourable to lower SES students (Meadmore, 1999). Thus, the middle-class Eurocentric 

culture of Australian schools and implicitly understood patterns of communication and interactions serve to 

further marginalise students with low-SES backgrounds from school mathematics. The nature of discourses 

within school practices do not always successfully link to, nor validate, mathematical practices that may be part 

of low-SES students’ out-of-school experiences (Baker et al., 2006), leading to insufficient links being made 

between students’ existing mathematical knowledge and practices and school mathematics. In these cases, 

students may disassociate from school mathematics and feel they cannot succeed, particularly if their home skills 

and knowledge are not valued nor actively sought (Thomson, 2002).  

Expectations may also pose difficulties for low-SES students as for Indigenous students. Low-SES parents may 

perceive mathematics as alienating and unnecessary or too difficult for their children to learn; this can lead to 

students not expecting to succeed in mathematics, having low expectations of themselves and their future roles 

in society, and not participating in mathematics classrooms. Teachers may also have low expectations of low-SES 

students and often believe that lower level or life numeracy is all that is needed for these students (Baker et al., 

2006). The resulting emphasis of mathematics for these students becomes utilitarian, rote and procedural 

mathematics tasks that are not explicitly related to overarching mathematical structures. 

5.4.3 Strengths and weaknesses of Eurocentric mathematics 

Interestingly, the Eurocentric mathematics taught in Australian schools has weaknesses due to its cultural bias. 

Because of the way their culture was developing, European societies developed mathematics to help them 

explain their world and solve their problems, particularly to explain space, time and, eventually, number. When 

trading became a way of life, a need developed to be more precise in representing and quantifying value to have 

a shared agreement of how values could be compared (“is mine worth more than yours”), a more sophisticated 

process than quantification because it involves rate (e.g. 3 cows = 1 boat). Over time, the European mathematics’ 

quantification and comparison system grew to encompass a variety of numbers (common and decimal fractions, 

percentages, rates and ratios), measures of time and shape (length, area, volume, mass and angle), and two 

operations (addition and multiplication) and their inverses (subtraction and division). The system was also 

generalised to findings that hold for all numbers and measures, and the resulting mathematics area of algebra 

has grown in importance as science and technology has expanded.  

The weakness of European mathematics lies in its strength, the success of its quantifying and comparing systems in 

underpinning the growth of science and technology. This has resulted in longer and healthier lives and the devices 

that support work, home life and leisure. Western society now has the tools to change our environments to make 

living better; we can cool the hot, warm the cold, clear the land, bring in new plants and animals, and clothe, shelter, 

and feed large populations. However, this triumph has affected European culture and society. Success has come to 

mean increasing numbers and continued growth; smaller numbers and negative growth are to be avoided (and are 

given names that signify failure, such as “recession”). The culture appears to have little ability to understand 

harmony and act sustainably; it tries to dominate the land, the sea, the weather, and the animals, birds and fish, 

with little understanding of how things interact to allow human life, resulting in poverty, hunger, war, pestilence 

and climate change. Mathematics can be developed which would reinforce planetary equity and sustainability (see 

Figure 16); however, such mathematics requires less dominance by number, less need for growth, and an emphasis 

on living in harmony with land and sea; a non-Eurocentric form of mathematics.  
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The progress of Eurocentric mathematics 

 

A better mathematical progress 

Figure 16  Two perspectives of progress 

5.4.4 Implications for teaching culturally diverse students 

Traditional teaching of mathematics can confront Indigenous and low-SES students’ cultures and perpetuate the 

belief that success in mathematics classrooms requires the rejection of culture (i.e. that one has to become 

“white” or middle class). To be effective, mathematics teaching needs to enhance mathematics outcomes but 

retain pride in culture and heritage. Approaches that seem to be effective are as follows. 

1. Discuss the role of mathematics. Confront the Eurocentric nature of traditional school mathematics by 

making students aware of the cultural implications of mathematics teaching, and draw attention to which 

mathematics ideas change perceptions of reality. Discuss the role of mathematics in European culture and 

draw attention to its strengths and weaknesses. Make mathematics available to all students.  

2. Legitimise and contextualise the mathematics. Legitimise local Indigenous or other cultural knowledge and 

integrate students’ culture and mathematics instruction, to match the mathematics classroom to the cultural 

capital brought by the students (Bourdieu, 1973). Contextualise mathematics into the life and culture of 

students, using models and activities from the everyday lives of the students. Use a local cultural framework 

for learning. Take account of English not being the first or home language of students; develop language and 

be aware of different meanings for mathematics words. 

3. Modify teaching pedagogies. Present mathematics as a holistic structure that can empower the learner by 

focusing on big ideas and using instructional strategies that relate acting, creating, modelling and imagining. 

Modify teaching pedagogies to include cultural perspectives.  

4. Integrate with whole-school changes. Realise that approaches to improve mathematics learning cannot 

stand alone, and they need to be allied with whole-school activities that include the local community, 

challenge attendance and behaviour, have high expectations, develop local leadership and give a strong role 

to local teacher aides. 
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Appendices 

Appendix A: Major big ideas by topic area and strand 

Global big 
ideas 

 Symbols tell stories. The symbols of mathematics enable the world to be described succinctly and in 
a generalised way (e.g. 2 + 3 = 5 means caught 2 fish and then caught another 3 fish, or bought a $2 
chocolate and $3 drink, or joined a 2 m length of wood to a 3 m length, and so on). 

 Change vs relationship. Everything can be seen as a change (e.g. 2 goes to 5 by +3) or as a 
relationship (e.g. 2 and 3 relate to 5 by addition). 

 Probabilistic vs absolutist. Things are either determined by chance (e.g. will it rain?) or are exact 
(e.g. what is $2 + $5?). 

 Accuracy vs exactness. Problems can be solved accurately (e.g. find 5 275 + 3 873 to the nearest 
100) or exactly (5 275 + 3 873 = 9 148). 

 Continuous vs discrete. Attributes can be continuous (smoothly changing and going on forever – e.g. 
a number line) or they can be broken into parts and be discrete (can be counted – e.g. a set of 
objects). Units break continuous length into discrete parts (e.g. metres) to be counted. 

 Part-part-total/whole. Two parts make a total or whole, and a total or whole can be separated to 
form two parts (e.g. fraction is part-whole, ratio is part to part; addition is knowing parts, wanting 
total). 

Numeration 
big ideas 

 Part-whole/Notion of unit. Anything can be a unit – a single object, a collection of objects, a section 
of a line, a collection of lines. Units can form groups and units can be partitioned into parts (e.g. if 
there are six counters, each counter can be a unit, making six units, or the set of six can be one 
unit.) 

 Concept of place value. Value is determined by position of digits in relation to ones place. 

 Additive/Odometer. All positions change forward from 0 to base, then restart at 0 with position on 
left increasing by 1, and the opposite for counting back (e.g. 23⁄5, 24⁄5, 3, 31⁄5, and so on). 

 Multiplicative structure. Adjacent positions are related by moving left (× base); moving right (÷ 
base). Base is normally 10 or a multiple of 10 in Hindu-Arabic system and metrics. 

 Number line. Quantity on a line, rank, order, rounding, and density. 

Equals, 
operations 
and algebra 
big ideas 

 Concepts of the operations. Meanings of addition, subtraction, multiplication and division. 

 Equals and order. Reflexivity/non-reflexivity: A = A but A is not > A; Symmetry/antisymmetry: A = B 
 B = A while A > B  B < A and A < B  B > A; Transitivity: A = B and B = C  A = C and A > B and 
B > C  A > C. 

 Balance. Whatever is done to one side of the equation is done to the other. 

 Identity. 0 and 1 do not change things (+/− and ×/÷ respectively). 

 Inverse. A change that undoes another change (e.g. +2/−2; ×3/÷3). 

 Commutativity. Order does not matter for +/× (e.g. 8 + 6 / 6 + 8; 4 × 3 / 3 × 4). 

 Associativity. What is done first does not matter for +/× (e.g. (8 + 4) + 2 = 8 + (4 + 2), but (8 ÷ 4) ÷ 2 ≠ 
8 ÷ (4 ÷ 2)). 

 Distributivity. ×/÷ act on everything (e.g. 2 × (3 + 4) = 6 + 8; (6 + 8) ÷ 2 = 3 + 4). 

 Compensation. Ensuring that a change is compensated for so answer remains the same – related to 
inverse (e.g. 5 + 5 = 7 + 3; 48 + 25 = 50 + 23; 61 − 29 = 62 − 30). 

 Equivalence. Two expressions are equivalent if they relate by +0 and ×1 – also related to inverse, 
number, fractions, proportion and algebra (e.g. 48 + 25 = 48 + 2 + 25 − 2 = 73; 50 + 23 = 73; 
2⁄3 = 2⁄3 × 2⁄2 = 4⁄6). 

 Inverse relation for −, ÷ / direct relationship +, ×. The higher the number the smaller the result (e.g. 
12 ÷ 2 = 6 > 12 ÷ 3 = 4; 1⁄2 > 1⁄3); the higher the number the higher the result (e.g. 4 + 3 < 4 + 7). 

 Backtracking. Using inverse to reverse and solve problems (e.g. 2y + 3 = 11 means y × 2 + 3, so 
answer is 11 – 3 ÷ 2 = 4). 

 Basic fact strategies. Counting, doubles, near 10, patterns, connections, think addition, think 
multiplication. 

 Operation strategies. Separation, sequencing and compensation. 

 Estimation strategies. Front end, rounding, straddling and getting closer. 
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Measurement 
big ideas 

 Concepts of measure. Length, perimeter, area, volume, capacity, mass, temperature, time, 
money/value, angle. 

 Notion of unit. Understanding of the role of unit in turning continuous into discrete. 

 Common units. Must use same units when comparing and calculating (e.g. a 3 m by 20 cm rectangle 
does not have an area of 60). 

 Inverse relation. The bigger the unit, the smaller the number (e.g. 200 cm = 2 m). 

 Accuracy vs exactness. Same as Global principle (e.g. cutting a 20 cm strip usually does not give a 
length of exactly 20 cm). 

 Attribute leads to instrumentation. The meaning of an attribute leads to the form of measuring 
instrument (e.g. mass is heft or pushing down on hand, so measuring instrument is how long it 
stretches a spring). 

 Formulae. Perimeter, area, volume formulae. 

 Using an intermediary. Using string to compare length of a pencil with distance around a can. 

Geometry big 
ideas 

 Concepts. All types of angles, lines, 2D shapes and 3D shapes, flips-slides-turns, symmetries, 
tessellations, dissections, congruence, coordinates (Cartesian, polar), plotting graphs (slope, y-
intercept, distance, midpoint), types of projections, similarity, trigonometry, topology, networks.  

 Formulae. Angle, length, diagonal and rigidity formulae and relationships – interior angle sums, 
Pythagoras, trigonometry (sine, cosine and tangent), number of diagonals, number of lines to make 
rigid. 

 Reflection and rotational relationship. Number of rotations equals number of reflections; rotation 
angle double reflection angle (holds for symmetry and Euclidean transformations). 

 Euler’s formula. Nodes/corners plus regions/surfaces equals lines/edges plus 2 (holds for 3D shapes 
and maps). 

 Transformational invariance. Topological transformations change straightness and length, projective 
change length but not straightness, and Euclidean change neither. 

 Visualising. Mental rotation, choosing starting piece. 

Statistics and 
probability 
big ideas 

 Tables and graphs. Types of charts and tables, comparison graphs, trend graphs and distribution 
graphs. 

 Concept of probability. Chance (possible, impossible and certain), outcome, event, likelihood. 

 Inference concepts. Variation, error, uncertainty, distribution, sample, and inference itself. 

 Experimental vs theoretical. Knowing when something can be calculated or determined by trials. 

 Equally likely outcome. Outcomes as a fraction by number giving result ÷ total number. 

 Formulae. Mean, mode, median, range, deviation, standard deviation, quartiles. 

 Integration of different knowledges. For example, question Do typical Year 7 students eat healthily? 
requires some form of data gathering, determining typical, and determining healthy eating. 

Pedagogy big 
ideas 

 Interpretation vs construction/Generation vs illustration. Things can either be interpreted (e.g. what 
operation for this problem, what properties for this shape) or constructed (write a problem for 
2 + 3 = 5; construct a shape of 4 sides with 2 sides parallel) – activities should generate students’ 
knowledge not illustrate teachers’. 

 Connections lead to instruction/Seamless sequencing. Two connected ideas are taught similarly and 
progress from one to the other should not involve changing rules. 

 Pre-empting and peel back/Compromise and reteaching. Look forward and back – teach for 
tomorrow and rebuild from known – be aware what ends and what lasts forever and rebuild ideas 
not lasting. 

 Gestalt leaps and superstructures. Look out for ways of accelerating knowledge. 

 Language as labels/Construction before explanation. New ideas to be constructed not told. 

 Unnumbered before numbered. Big ideas are best started in situations without number. 

 Creativity. Let students create own language and symbols (particularly to support pattern). 

 Triadic relationships. When three things are related, there are three problem types (e.g. 2 + 3 = 5 
can have a problem for: ? + 3 = 5,  2 + ? = 5,  2 + 3 = ?). 

 Problem solving. Metacognition, thinking skills, plans of attack, strategies, affects, and domain 
knowledge. 

 RAMR cycle. All components of RAMR cycle are big pedagogy ideas. 
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