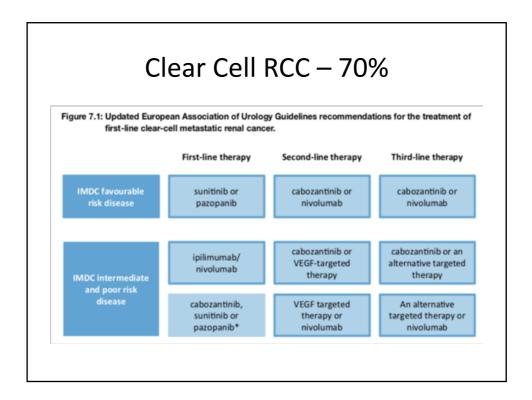

Queensland Molecular Tumour Board

8th May 2019 Room 2004, TRI, Princess Alexandra Hospital, Woolloongabba, QLD

JS UR858986

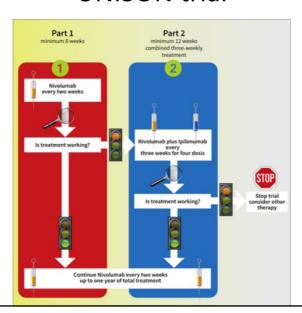

- Summary: 34 year old male with metastatic collecting duct carcinoma
 - June 2016 Laparoscopic radical nephrectomy
 - T3aN0R0
 - April 2017 CT abdomen and pelvis
 - Two new right renal bed soft tissue nodules, interval regional lymph node enlargement and pelvic free fluid suspicious for disease recurrence with peritoneal metastasis
 - June 2017 Open retroperitoneal lymph node dissection
 - 2 lymph node metastatic deposits removed
 - Feb 2018 Admission
 - Peritoneal metastatic disease, weight loss and malignant ascites
 - March 2018 Clinical Trial
 - Enrolled to UNISON trial
 - Current treatment Ipilumab and Nivolumab
 - May 2019
 - · Complete remission

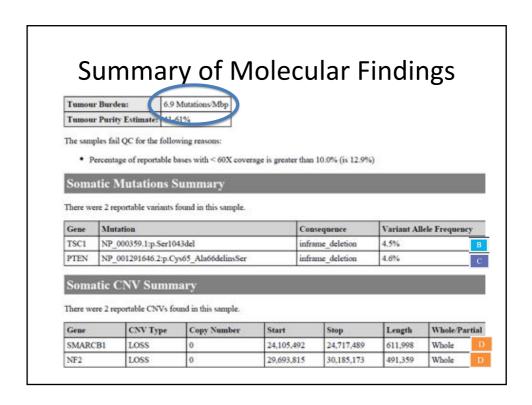
Renal cell carcinoma treatments

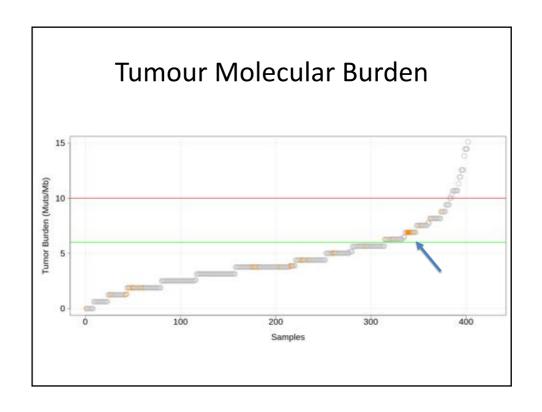
Non-Clear Cell RCC - 30%

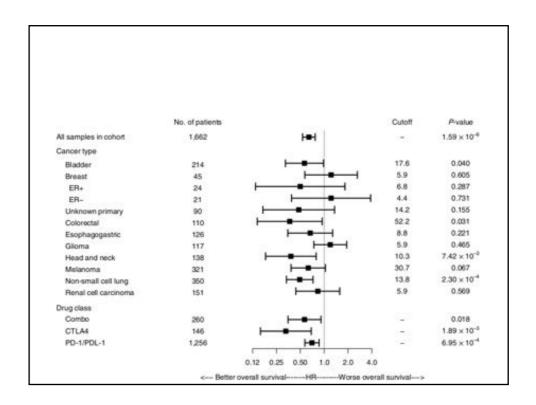
- Outcome of these patients with targeted therapy is poorer than for ccRCC
- Targetted therapies
 - Temsirolimus
 - Everolimus
 - Sorafenib
 - Sunitinib

Trial	Treatment	Randomized?	Number Enrolled	Histology Type	Overall Response Rate	Progression-Free Survival	Overall Survival
ESPN	Sunitinib vs. everolimus	Yes	68 patients	All non-clear cell	9% vs. 3%	6.1 vs. 4.1 months	16.2 vs. 14.9 months
ASPEN	Sunitinib vs. everolimus	Yes	108 patients	All non-clear cell	18% vs. 9%	8.3 vs. 5.6 months	31.5 vs. 13.2 months
RECORD-3	Sunitinib vs. everolimus	Yes	66 patients	All non-clear cell	N/A	7.2 vs 5.1 months	N/A
SUPAP	Sunitinib	No	61 patients	Papillary	13% (type I) and 11% (type II)	6.6 months (type I) and 5.5 months (type II)	17.8 months (type I) and 12.4 months (type II)


Systemic treatment options


- **For collecting duct carcinoma, due to its rarity and aggressiveness, there are no standard treatments
- Immune checkpoint inhibitors


	IMDC intermediate and poor risk			ITT population (secondary endpoint)		
	IPI/NIVO	sunitinib	HR	IPI/NIVO	sunitinib	HR
n	425	422		550	546	
RR	42	27		39	32	
95% CI	(37-47)	(22-31)		35-43	28-36	
PFS	11.6	8.4	0.82	12.4	12.3	0.98
99.1 CI	(8.5-15.5)	(7.0-10.8)	(0.64-1.05)	(9.9-16.5)	(9.8-15.2)	(0.79-1.23")
os	NR (28.2-NR)	26.0 (22-NR)	0.63	NE	32.9	0.68
99.8 CI			(0.44-0.82	(NE-NE)	(NE-NE)	(0.49-0.95)


CI = confidence interval; HR = hazard ratio; IPI = ipilimumab; IMDC = International Metastatic Renal Cell Carcinoma Database Consortium; ITT = intention to treat; n = number of patients; NE = neutral effect; NIVO = nivolumab; NR = not reported; OS = overall survival; PFS = progression-free survival; RR = relative risk.

UNISON trial

Other cases reported

Mizutani et. al to nivolumab in metastatic collecting duct carcinoma expressing PD-L1: A case report Mol. And Clin. Oncology 2017

67 yr male

- temsirolimus for recurrence of the lung and lymph node metastases for 30m
- Nivolumab complete response of the lung metastasis, stabilized the lymph node
- PBRM1 mutation (Miao et. al. Science 2018 ccRCC biomarker p=0.012)

Yasuoka et al. Nivolumab therapy for metastatic collecting duct carcinoma after nephrectomy: A case Medicine 2018

73 yr male

- · Gemcitabine progressed liver, adrenal mets
- Nivolumab 2 courses partial response
- 5 courses with no progression

No genomic profiling but PD-L1 response reported

DNA sequence deviation from a "reference sequence" GRCh37/hg19 GRCh38/hg38 NG_xxxxxx NM_xxxxxx ENSGxxxxxx ENSTxxxxxx

Types of variants Single nucleotide variants (SNVs) Insertions/deletions (indels) Copy number changes/variants (CNCs/CNVs) – larger deletions/duplications (e.g. whole exon, multiexonic, multigene); amplifications Structural variants (SVs) – translocations, inversions, fusions

Variant effect

- Some have no effect on protein sequence/structure (e.g. deep intronic variants, synonymous coding variants)
- ▶ Others result in amino acid substitutions (missense), or protein truncation or loss (nonsense, frameshift)
- Other effects: in-frame deletion/insertion of sequences, aberrant splicing, etc.

Variant – pathogenicity

- ▶ Not all deviations will cause disease
- Population studies/databases e.g. ExAC/gnomAD, EVS, DGV large number of germline variants in general population which are tolerated
- Missense mutations may or may not affect protein function depending on biochemical difference between amino acids, location in functional domain/catalytic site, or effect on protein folding/stability, phosphorylation sites, etc.
- ▶ In the past, no standardization some rely heavily on conservation, some on in silico, etc. Highly variable classification between labs.

Best practice guidelines

- ▶ Richards et al. 2015 ACMG/AMP (germline/constitutional)
- ▶ Codifies:
 - ▶ Type of evidence support pathogenic/benign
 - ▶ Weighting
 - Amount of evidence to support Classification
 - Caveats

Germline variant curation

- ▶ Pathogenic: PVS, PS, PM, PP
- ▶ Benign: BA, BS, BP
- 5 classes of variants: Pathogenic (C5), Likely pathogenic (C4), Variant of uncertain significance (C3), Likely benign (C2), Benign (C1)
- Examples
- ▶ PVS1 Nonsense/frameshift in gene where LOF is disease mechanism
- ▶ PP3 multiple in silico algorithms consistently predict damaging
- Segregation (or lack of) with disease in pedigrees depends on number of informative individuals
- PM2 absent in population databases
- ▶ BA1/BS1 frequency in population too high for disease
- Other evidence types: de novo (parents tested), functional studies/functional domain, co-inheritance with known pathogenic variant, specificity for patient phenotype

Rules for combining evidence

- ▶ (1 PVS + 1 PS) OR (1 PVS + 2 PM) OR (2 PS) etc = pathogenic
- \blacktriangleright (1 PS + 1 PM) OR (1 PS + 2 PP) OR (3 PM) etc = likely pathogenic
- ▶ (1 BA) OR (2 BS) = benign
- ▶ (1 BS + 1 BP) OR (2 BP) = likely benign
- ► Conflicting, or insufficient = VUS
- Now quite widely adopted internationally in clinical diagnostic setting for germline Mendelian (rare) disorders

Somatic (cancer) variant curation

- Questions:
- ▶ Is this gene important in this cancer type?
- ▶ Is this variant likely to disrupt the normal function of this gene?
- Is the direction of disruption consistent with pathogenesis (e.g. tumour suppressor vs oncogene)?
- ▶ Is there known clinical utility?
- Richards et al. ACMG germline guidelines not really designed for somatic, and many criteria do NOT work in somatic setting
- ▶ In somatic setting, focus is less on "disease causation", and more on impact on clinical care

AMP/ASCO/CAP (Li et al. 2017)

- ▶ Designed for somatic setting
- ► Effort for standardization of curation but less widely adopted than germline guidelines
- ▶ Therapeutic, prognostic, diagnostic significance
- ► Gives weighting for quality of evidence (Levels A to D)
- ▶ 4 Tier classification of variants
- Overlaps but differs from classification systems used by various somatic variant databases (which all differ from each other)

Criteria for evidence

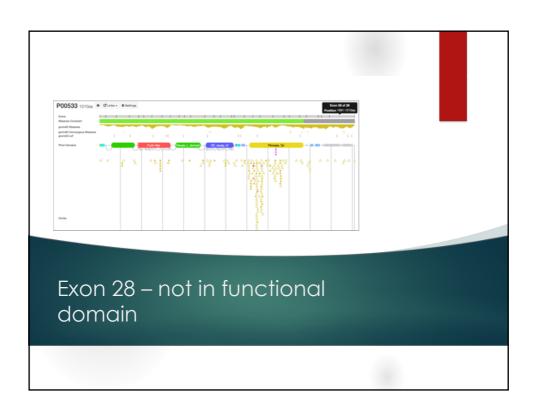
- Level A approved therapy, or professional guidelines, for the same specific tumour type
- Level B well powered studies, with consensus from experts, for same tumour type
- Level C approved therapy or professional guidelines, for a DIFFERENT tumour type; multiple small studies
- Level D preclinical studies, case reports, small studies. Plausible significance
- ▶ In silico prediction for reference only
- ▶ Population database frequencies
- Signaling pathways

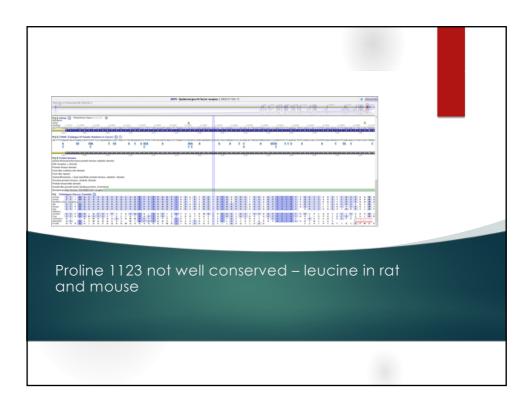
Finding the evidence

- ► Multiple information sources:
- ▶ Literature pubmed, google scholar
- Somatic variant databases: COSMIC, CiVIC, MyCancerGenome, OncoKB, cBioPortal, etc.
- ► NCCN, ELN, EviQ guidelines
- ► TGA, FDA, EMA
- ▶ In silico predictors: SIFT, PolyPhen, Provean, CADD, etc.
- ▶ Protein domain structure, missense constraint Decipher, Uniprot
- ▶ Population databases gnomAD

Classification of somatic variants

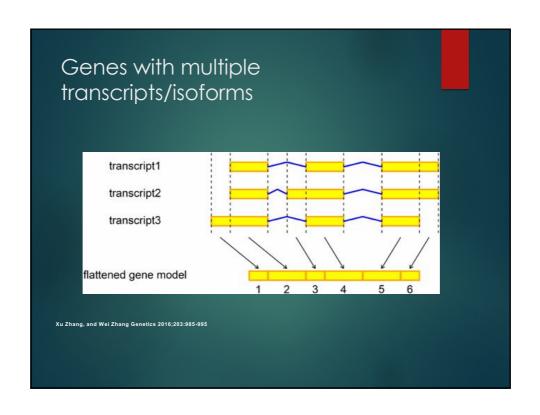
- ▶ Tier 1 Strong clinical significance (Level A or B)
- ▶ Tier 2 Potential clinical significance (Level C or D)
- ▶ Tier 3 unknown clinical significance
- ► Tier 4 benign or likely benign
- ▶ Takes into account availability of approved targeted therapy
- ► Classification likely to change with time
- ▶ Often fairly subjective

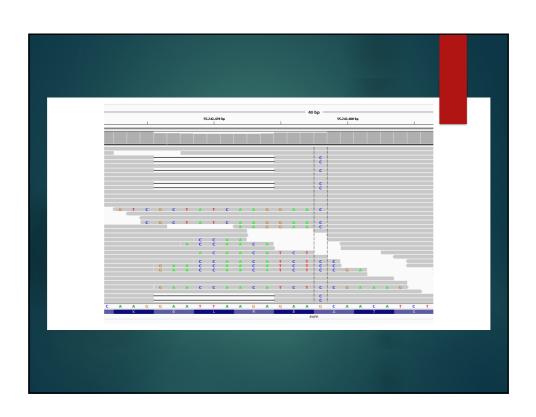

Pathology Queensland process

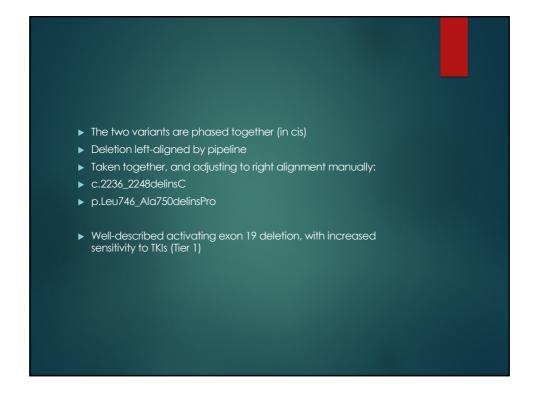

- ▶ Take into account some elements of ACMG germline criteria which can be applied (for reference)
- ➤ Search of literature and multiple somatic variant databases for previous reports, management guidelines
- Discussion for ambiguous cases molecular genetic scientist, haematologists, anatomical pathologists, genetic pathologist
- Clinical reporting

An example

- ▶ 79 yo male
- ▶ R intermediate bronchus tumour squamous cell Ca
- ▶ WES lung panel (14 genes) EGFR:c.3368C>T p.(Pro1123Leu)
- ▶ Exon 28 of 28
- > ? Significance
- ? Classification




Variant – nomenclature


- ▶ Precisely describe what and where the change (deviation) is
- ▶ HGVS
- Often overlooked, but fundamentally important for interpretation, knowledge sharing
- ► Genomic chr2:g.1234567G>A
- ▶ cDNA (transcript) NM_002234:c.454C>T or NM_1002345:c.234C>T
- Protein NP_203456:p.(Leu152Arg)NP_034567:p.(Leu78Arg)

Variant calling with NGS

- ▶ Bioinformatics often problems with indels:
- pipelines usually left-align for conformance with VCF specifications, but molecular genetics community uses HGVS standard which is right-aligned
- ▶ Sometimes calls a single change as two separate variants
- ▶ Requires local realignment and/or manual visualisation of BAM files

An example ► 55 yo female ► Lung adenocarcinoma ► WES analysed for 14 gene lung panel ► 2 EGFR variants detected by bioinformatics pipeline: ► 1. NM_005228.3:c.2239_2247del NP_005219.2:p.Leu747_Glu749del ► 2. NM_005228.3:c.2248G>C NP_005219.2:p.Ala750Pro ► In-frame deletion + missense variant, both in exon 19

Key take-home messages Variant curation is not completely standardized even in germline setting - Somatic curation is even less standardized AMP/ASCO/CAP guidelines Just because a variant is in a gene associated with a particular disease/cancer type does not mean it is a clinically meaningful pathogenic variant No single data source/database provides all information Transcript/protein isoform reference sequences used are important