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A striking perceptual phenomenon has recently been described wherein
people report seeing abrupt jumps in the location of a smoothly mov-
ing object (“position resets”). Here, we show that this phenomenon can
be understood within the framework of recursive Bayesian estimation as
arising from transient gain changes, temporarily prioritizing sensory in-
put over predictive beliefs. From this perspective, position resets reveal a
capacity for rapid adaptive precision weighting in human visual percep-
tion and offer a possible test bed within which to study the timing and
flexibility of sensory gain control.

1 Introduction

Accurate visual localization of objects is critical for adaptive behavior, both
evolutionarily (e.g., targeting prey while hunting) and in modern life (e.g.,
navigating through traffic). However, there are instances where localization
goes awry. One of the most striking examples is the double-drift illusion,
which occurs when a moving object contains internal motion in a direction
orthogonal to its global trajectory (see Figure 1A; Lisi & Cavanagh, 2015).
Under such conditions, if the object is viewed peripherally, extreme mis-
localizations can occur.

Recently it has been shown that the double-drift illusion can be reset,
such that people report seeing the object abruptly jump back toward its
true position (Nakayama & Holcombe, 2020). These position resets can be
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Figure 1: Accounting for position resets in the double-drift illusion. (A) When
viewed peripherally (under high sensory uncertainty), a diagonally moving
Gabor stimulus can appear to travel along a vertical path if its internal pat-
tern (phase) moves in an orthogonal direction. (B) With a brief flash of white
patches near the Gabor, participants report seeing abrupt position resets, such
that the stimulus appears to move along a zigzag-shaped path. Panels show
hand-drawn stimulus trajectories from two participants viewing double-drift
stimuli with (right) and without (left) a transient flash (Nakayama & Holcombe,
2020). With flashed patches (presented in the region highlighted by the red
strip), an abrupt kink can be seen midway through the trajectories, indicating
that participants saw the stimulus jump back toward its true position. (C) A gen-
erative model of the Bayesian observer, adapted from Kwon et al. (2015). White
nodes indicate hidden variables, and gray nodes indicate observable variables,
which are noisy measurements of the connected hidden variables. Arrows indi-
cate causal links. The superscripts o0 and p refer to object and pattern velocities,
respectively. (D) A Bayesian object-tracking model (Kwon et al., 2015) gives a
principled account of position resets. Transient gain modulations, modeled via
a log-normal function with varying amplitude (see panel E), drive the rapid
reweighting of inputs and predictions within the model, resulting in a zigzag-
shaped trajectory estimate. Black diagonal lines indicate the true stimulus trajec-
tories, blue lines show-estimated trajectories under no gain modulation, and or-
ange lines show model-estimated trajectories under gain modulations of vary-
ing amplitude.

triggered by visual transients near the object or may occur spontaneously
('t Hart et al., 2022). When asked to draw the (linearly moving) object’s
trajectory, participants draw a zigzag-shaped path (see Figure 1B).
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Currently, the cause of position resets is unknown. One high-level ac-
count suggests that shifts of attention may somehow reset the perceived
position of the object back to its veridical position (Nakayama & Holcombe,
2020). However, a computationally rigorous account of this phenomenon is
lacking, and the question of why attention might drive resets has not been
addressed.

Here, we consider this phenomenon from the perspective of recursive
Bayesian estimation, where perception is viewed as an unfolding inference
process in which sensory inputs are combined with internally generated
predictions to derive more precise estimates of world states (e.g., an object’s
position and speed). From this perspective, we show that position resets can
arise from transient gain changes that temporarily prioritize sensory input
over predictive beliefs.

2 Model and Results

We simulated an object-tracking model previously used to account for a
variant of the double-drift illusion (the curveball illusion; for full details,
see the linked code and Kwon et al., 2015). At its core is a generative model
of motion dynamics (i.e., the physical laws of motion) used to derive pre-
dictions about current world states. From this, predictions are made about
the current position and velocity of an object given its past state (see the pre-
diction model, equations 2.1-2.3 in section 2.1). These are integrated with
noisy sensory inputs (see the measurement model, equations 2.4-2.6 in sec-
tion 2.1) to derive more precise state estimates (see Figure 1C for a graphical
depiction of the generative model).

2.1. Modeling Motion and Position Perception via Recursive Bayesian
Estimation. We can specify the model in discrete form with the following
time update equations:

Prediction Model
object
Xt = X1+ At-v (2.1)
object object v_object yvo
v, =av,_; + o=, (2.2)
pattern __ pattern t vp
v; =Bv,_,  +o QT (2.3)

These equations specify predictions about the object’s current state at
time t, given its previous state at time  — 1. Equation 2.1 updates the object’s
position (x) by integrating its global velocity (v*/*) over time. Equations
2.2 and 2.3 are stationary gaussian processes that characterize global object
(v**/¢) and internal pattern velocities (v*"), with « and g determining
velocity correlations over time (see Kwon et al., 2015, for a full description),
ov-biet and g v-Pettern gpecifying standard deviations (SDs) of changes in
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object and pattern velocities, and Q; representing unit variance gaussian
noise.

Measurement Model

yi=x+ 0l @4)
y:}bject _ Ufbjm + pr—obiect Qv (2.5)
yfmttsrn _ vtobject + vtpattem + nv_patterngtyp. (26)

These equations specify sensory measurements of retinal stimulus posi-
tion (%), retinal object velocity (y*/**), and the retinal velocity of the pattern
within the object (7). These are corrupted by gaussian noise with SDs
given by n*, n*-0ict and n'-Ften respectively.

To build an intuitive understanding of how the model works, we will
walk through one time step. First, predictions about the current world state
are generated. That is, predictions are made as to the current position and
velocity of the object, as well as the velocity of its internal pattern, via the
previous estimates of these variables and the internal model of motion dy-
namics (equations 2.1-2.3). These predictions can be written in matrix form
%, representing a set of position and velocity estimates along the vertical
and horizontal dimensions, with corresponding uncertainties (P). Simulta-
neously, new sensory measurements are received (z), with corresponding
uncertainties (R), according to the measurement model (equations 2.4-2.6).
Crucially, the predicted and measured states will likely differ, and thus
a final state estimate can be determined by combining these two sources
of information. The goal here is to find the optimal state estimate given
the noisy predictions and measurements. Under the assumption that both
follow gaussian distributions, the optimal combination of these sources is
afforded by the Kalman filter (Kalman, 1960). This provides the optimal
solution to our inference problem, balancing the relative precision of each
information source. The Kalman gain K (equation 2.7) determines the
weighting that minimizes the posterior variance as follows:

p

=PIR + M. (2.7)

Here, P represents the uncertainty of the predictions, R represents the un-
certainty of sensory inputs, and M is a gain modulation term that we have
added to the base model.! Examining equation 2.7, we can see that gain is
determined by the relative uncertainty of predictions and inputs (the ratio
of P and R). With more precise inputs or less certain predictions, gain is
high. Conversely, with more precise predictions or less certain inputs, gain

'For simplicity we omit the observation matrix (H) from all equations.
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is low. The term M represents an additive gain modulation parameter that
we have introduced to the standard Kalman filter framework. Its additive
nature is somewhat arbitrary, as we currently don’t have the empirical basis
to differentiate between distinct functional forms of modulation (see section
3 for further consideration). By adjusting the gain modulation matrix (M) in
a time-varying manner, we can simulate transient changes in gain while re-
maining agnostic to their underlying cause (see below and section 3). That
is, we can effectively modulate the weighting between sensory inputs and
predictions, with increased gain shifting the weight toward incoming sen-
sory information.

Having specified the gain, a weighted combination of the predictions (%)
and inputs (z) can be taken. That is, we can derive a precision-weighted
combination of our predictions and measurements, generating an optimal
state estimate:

f=2+K(z-1%). (2.8)

Thus, the final state estimate (%) is determined by the current pre-
dictions (£) plus the precision-weighted prediction error—the difference
between sensory inputs and predictions, multiplied by the Kalman gain.
Consequently, with more precise sensory input, the gain will be high,
and thus the input will play a greater role in determining the final state
estimate. Conversely, with more uncertain input, or precise predictive
beliefs, sensory input will be down-weighted, and the final estimate will
be largely determined by the current predictions.

To summarize, this model casts perception as an unfolding Bayesian in-
ference process. At a given time point, predictions are generated and sen-
sory inputs are received. A final perceptual estimate is then derived via a
weighted combination of these two noisy information sources according
to their relative precision. This base model (Kwon et al., 2015) has been
used to give a unifying account of a range of different motion and posi-
tion phenomena, neatly explaining why illusory effects often arise during
peripheral viewing, when sensory uncertainty is high. In the following sec-
tion, we show that this model can also explain the puzzling phenomenon
of position resets via the addition of transient gain modulations. These tem-
porarily shift the weight given to inputs and predictions in the unfolding
inference process, leading to abrupt resets in the object’s trajectory estimate.

2.2. Simulation Results: Transient Gain Modulations Can Drive Po-
sition Resets. In our simulations, we examined the effect of transient gain
modulations on model-derived object trajectory estimates. That is, we ex-
amined how brief changes in the weight given to sensory inputs and pre-
dictions affected the perceived trajectory of the stimulus.

To simulate gain modulations, from 900 ms after stimulus onset, we
varied the diagonal of the additive gain modulation matrix (term M in
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Figure 2: Examining the accuracy and uncertainty of state estimates. Panels A
to C show the true and model estimated states of object position, velocity, and
pattern velocity, respectively. Estimates along the horizontal and vertical dimen-
sions are shown in blue and orange, respectively. Panels D to F show the stan-
dard deviation (square root of the diagonal elements of matrix P in equation 2.7)
of these state predictions over time. Note that these simulations are run within
the highest gain modulation condition.

equation 2.7) according to a log-normal function with varying ampli-
tude (see Figure 1D). This allowed us to simulate time-varying, transient
changes in gain. Simulating modulations of varying strength, we found
that transient increases in gain reliably induced position resets. Stronger
modulations triggered more abrupt resets, with model trajectory estimates
qualitatively mirroring those from Nakayama and Holcombe (2020). These
resets occur because the gain modulations drive a rapid reweighting of pre-
dictions and inputs, temporarily up-weighting input and down-weighting
predictions and shifting the object’s estimated position back toward its
true location.

To get a sense of the internal dynamics of the model during reweighting,
we plot the true and model estimated states (position, velocity, and pattern
velocity), as well as the uncertainty (SD) of these estimates over time (see
Figure 2), for the strongest gain modulation condition. Following gain mod-
ulation, the model estimates are transiently more accurate and more certain.
This suggests that participants should also briefly perceive the object, and
its internal pattern, to be moving more quickly in their veridical direction,
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a prediction that to our knowledge has yet to be tested and thus warrants
further investigation.

MATLAB and Python scripts for recreating these simulations are avail-
able at https://github.com/bootstrapbill / position-reset-model.

3 Discussion

We have given a computational account of position resets in visual localiza-
tion (Nakayama & Holcombe, 2020). Through the lens of recursive Bayesian
estimation, we have shown that resets can arise from gain modulations
that temporarily prioritize sensory inputs over predictive beliefs. From this
perspective, position resets reveal a capacity for rapid adaptive precision
weighting (Yon & Frith, 2021) in human visual perception.

Importantly, the current model is agnostic to the cause of gain changes,
with modulations occurring via a general additive gain parameter (equa-
tion 2.7). At least two hypotheses warrant investigation. First, attention
shifts (either bottom-up or top-down) may sharpen incoming sensory in-
formation (Nakayama & Holcombe, 2020). With increased precision, these
inputs will be upweighted relative to predictions, triggering a reset. Sec-
ond, abrupt visual transients may trigger a reduction in the precision of
internally generated predictions (e.g., “Something has changed, so my pre-
dictions may no longer hold”; see Press et al., 2020). This too would lead to
the prioritization of inputs over predictions, and thus a reset. For proof-of-
principle simulations of these accounts, see the linked code.

These accounts may not be mutually exclusive and could be further
tested by examining whether resets are preceded by a sharpening of neural
object position representations (Turner et al., 2023; Turner et al., 2025; Yon
et al., 2018). As a general test of this overarching perspective, studies could
examine whether manipulations that increase sensory uncertainty (visual
noise) can prevent resets. If this is possible, this would support the core
idea that the relative precision of inputs and predictions ultimately deter-
mines their perceptual influence. More targeted manipulations of stimulus
parameters may also be examined. For example, the model predicts that
with less precise stimulus position information (e.g., a wider gaussian win-
dow), there should be a greater double-drift effect and more abrupt resets
(i.e., sharper kinks in the trajectory estimate). Conversely, the same effects
are predicted with a more precise pattern motion (e.g., a higher contrast
grating /pattern; see linked code for auxiliary simulations). With further
support for this model, studies may then investigate the neurochemical ba-
sis of gain modulations—for example, by testing whether specific pharma-
cological interventions can inhibit or disrupt resets (Moran et al., 2013), or
by studying pupil-linked arousal dynamics during spontaneous resets (‘t
Hart et al., 2022).

It is important to note that this model effectively assumes that internal
(model) time is equivalent to external (physical) time. However, this is at
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odds with the well-established fact of neural signalling delays within the vi-
sual system (see Turner et al., 2024 for a recent review). This is not a pressing
problem here, since the dynamics of the simulated stimulus are constant,
making the simulated behavior invariant across sensory lags. Nevertheless,
future studies should consider introducing sensory delays and converting
the existing model into a Bayesian smoother (for related work see Grush,
2005; Rao et al., 2001; Perrinet et al., 2014; Khoei et al., 2017). This would
allow for theoretical examination of possible interactions between changes
in stimulus dynamics and sensory gain that can then be tested empirically.

In general, we encourage further empirical study of position resets. The
goal of this note has been relatively modest: to show that the framework
of recursive Bayesian estimation can qualitatively capture this puzzling
perceptual phenomenon. We have restricted our focus to qualitative assess-
ments because participants” hand-drawn trajectories will likely have been
influenced by a range of nonperceptual factors (e.g., motoric costs, memory
effects). As we have noted, the additive nature of the assumed gain modu-
lation (M) is somewhat arbitrary. Given the lack of finely grained empirical
measurements of position resets, we do not yet have the empirical basis
for arbitrating between competing functional forms of gain modulation.
A limitation of the additive formulation is that bounds must be placed
on the value of this term to ensure model stability. Nevertheless, within
these bounds, this assumption is a reasonable first approximation. Future
work may refine this and explicitly test between differing functional forms
of gain modulation, once the prerequisite finely grained measurements
of position resets have been collected. Crucially, since a static positional
reference has been shown to markedly diminish the double-drift effect
(Saleki et al., 2021), future studies should avoid relative judgment tasks and
may instead adopt alternative nonreferential measurement approaches
(Liu et al., 2021). Moreover, given that eye movements have been shown to
temporarily reset the double-drift effect (Lisi & Cavanagh, 2015; Nakayama
& Holcombe, 2020), with illusory influence slowly reemerging as a function
of saccade latency (Ueda et al., 2018; Massendari et al., 2018), future studies
should control eye movement behavior. These studies could also examine
whether the temporal dynamics of illusion reemergence can constrain the
temporal dynamics of gain modulations within the current model.

If resets reflect rapid precision weighting, then individual variability
in this phenomenon should be examined. For example, studies could test
whether certain clinical populations are resistant to experiencing resets, as
this may be indicative of reduced perceptual flexibility—that is, a stubborn
perceptual experience. Relatedly, individual differences in the double-drift
illusion have been observed to correlate with individual differences in
the twinkle-goes and flash-grab illusions, suggesting they may share
underlying mechanisms (Cottier et al., 2023). Future studies may therefore
attempt to account for these illusions within the existing framework. As
a speculative example, in the twinkle-goes illusion, an increased reliance
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on predictions in the face of highly uncertain input (due to dynamic noise)
may drive the lingering percept of the stimulus.

In sum, we have shown that position resets in the double-drift effect
(Nakayama & Holcombe, 2020) can arise from transient gain changes in a re-
cursive Bayesian estimation framework. This suggests a capacity for rapid
dynamic precision weighting in human visual perception. Future studies
may further examine this phenomenon to better understand the temporal
dynamics of sensory gain control.
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