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Motivation: Stochastic Systems in the Real World

Finance

Epidemics

Cellular processes

Gene expression Elowitz et al. (2002) Science, v297
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Example: Biochemical Reaction Networks

Let X ∈ N1×N be the vector of populations of N chemical species, interacting according
to the M reactions,

N∑
i=1

Xiν
−
i,j

kj→
N∑
i=1

Xiν
+
i,j , j = 1, 2, . . .M.

where ν−, ν+ ∈ NN×M are called stoichiometries. kj is the rate parameter and
νj = (ν+

∗,j − ν
−
∗,j)

T is the state change for reaction j .

Example: Michaelis-Menten enzyme kinetics

X = [S ,E ,C ,P]; substrate (S), enzyme (E), complex (C), and product (P);

Reaction 1: S + E
k1→ C , with ν1 = [−1,−1, 1, 0], propensity k1SE ;

Reaction 2: C
k2→ S + E , with ν2 = [1, 1,−1, 0], propensity k2C ;

Reaction 3: C
k3→ P + E , with ν3 = [0, 1,−1, 1], propensity k3C ;
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Example Realisations

Initially, S = E = 100, and C = P = 0. Rates: k1 = 0.001, k2 = 0.005 and k3 = 0.01.
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Exact Stochastic Simulation

We can simulate exact sample paths from these systems.

Gillespie’s method (omitting some details)

1 Start with system at time t with state X ;

2 Draw a random variable, ∆t > 0, for the next reaction time t + ∆t;

3 Randomly select a reaction j ∈ [1,M] to occur;

4 Update state and time base on reaction event X ← X + νj and t ← t + ∆t;

5 Repeat until t > T .

Often we are interested in estimating some averaged behaviour,

E [f (XT )] =

∫
f (XT )p(XT )dXT ,

where f is some “well behaved function” and p(XT ) is the state probability density
at time T . Examples:

f (XT ) = XT , leads to the average state µ = E [XT ],

f (XT ) = (XT − µ)2, leads to the variance of the state v = V [XT ]

f (XT ) = 1 if XT < x and f (XT ) = 0 otherwise, leads to P(XT < x)

(i.e. cumulative distribution function F (x)).
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Monte Carlo Methods

We don’t typically have access to p(XT ), so we use repeated simulations.
N = 4

→

N = 100

Then we estimate the expectation using realisations, X 1
T , . . . ,X

N
T ,

E [f (XT )] ≈ f̂ =
1

N

N∑
i=1

f (X i
T ).

Note, E[f̂ ]→ E [f (XT )] and V[f̂ ]→ V [f (XT )] /N as N →∞.

For high precision estimates we need large N, which can be prohibitive.
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Approximate Stochastic Simulation

Aim: to reduce simulation cost of each realisation.

Assume propensities constant over time interval of length τ > 0.

Tau-leaping method (omitting some details)

1 Start with system state Z at time t;

2 Draw random variables Y1, . . . ,YM that count reaction events over [t, t + τ);

3 Update state and time Z ← Z +
∑M

j=1 Yjνj and t ← t + τ ;

4 Repeat until t > T .

Now we have a fixed compute cost of T/τ steps per realisation;

BUT! Our simulations are not exact any more, so E [f (ZT )] 6= E [f (XT )] in general.
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Exact vs Approximate Stochastic Simulation

Initially, S = E = 100, and C = P = 0. Rates: k1 = 0.001, k2 = 0.005 and k3 = 0.01.
For approximation, τ = 2.

0 20 40 60 80

t (sec)

0

20

40

60

80

100

c
o

p
y
 n

u
m

b
e
rs

 (
m

o
le

c
u

le
s
)

Tau-leaping method

0 20 40 60 80

time (sec)

0

20

40

60

80

100

c
o

p
y
 n

u
m

b
e
rs

 (
m

o
le

c
u

le
s
)

Gillespie method

S

E

C

P

Warne (QUT) Introduction to MLMC 13 May 2021 9 / 29



Computational Challenge

Suppose we use ZT for Monte Carlo estimate of E [f (XT )].

That is, choose τ small enough so

E [f (XT )] ≈ E [f (ZT )] ≈ f̂Z =
1

N

N∑
i=1

f (Z i
T ).

What is small enough? Think in terms of mean squared error (MSE),

MSE = bias2 + variance.

Informally, we have bias ∝ τ , variance ∝ 1/N and cost ∝ 1/τ .

Therefore, achieving MSE ∝ h2 requires cost ∝ N/h ∝ 1/h3. I.e., computational cost
scales poorly as h→ 0 and will eventually be more costly than exact simulation.
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Monte Carlo Performance (Exact vs Approximate)

Warne (QUT) Introduction to MLMC 13 May 2021 11 / 29



Key Idea: Multilevel Telescoping Sum (Giles, 2008)

For ` = 0, 1, . . . , L, denote Z`,T as an approximation to XT using τ` ∝ m−`.
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Key Idea: Multilevel Telescoping Sum (Giles, 2008)

For ` = 0, 1, . . . , L, denote Z`,T as an approximation to XT using τ` ∝ m−`.

E [f (XT )] ≈ E [f (ZL,T )]︸ ︷︷ ︸
low bias

approximation

= E [f (ZL−1,T )]︸ ︷︷ ︸
slightly biased
approximation

+E [f (ZL,T )− f (ZL−1,T )]︸ ︷︷ ︸
bias correction

= E [f (ZL−2,T )]︸ ︷︷ ︸
slightly more biased

approximation

+E [f (ZL−1,T )− f (ZL−2,T )] + E [f (ZL,T )− f (ZL−1,T )]︸ ︷︷ ︸
two bias corrections

...

= E [f (Z0,T )]︸ ︷︷ ︸
very biased

approximation

+
L∑
`=1

E [f (Z`,T )− f (Z`−1,T )]︸ ︷︷ ︸
L bias corrections

.

Seems like a bad idea? (recall for independent r.v., V [X − Y ] = V [X ] + V [Y ])
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Coupling Approximate Simulation Paths

In the tau-leaping method, Y1, . . . ,YM are Poisson random variables representing the
number of events over the interval [t, t + τ).

Thickening property: Poisson(a) + Poisson(b) = Poisson(a + b).

That is, can use m steps of length τ` to generate one step of length τ`−1.

The result is a coupled pair of paths (Z`,t ,Z`−1,t), that represent two approximations of
the same exact sample path Xt .

This does not violate the telescoping sum.
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Sample pairs
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Variance Reduction and Optimal Sample Sizes

This scheme induces a positive correlation between (Z`,t ,Z`−1,t) pairs.

Recall: for correlated r.v. V [X − Y ] = V [X ] + V [Y ]− 2C [X ,Y ].

That is we get a variance reduction in the correction estimator

B̂` =
1

N`

N∑̀
i=1

[
f (Z i

`,t)− f (Z i
`−1,t)

]
.

We can use path-wise convergence properties to show that V
[
B̂`
]
∝ τ`/N`.

For target MSE ∝ h2 we can optimise the choice of L and N` for ` = 1, . . . , L.

L ∝ − log h

logm
, N` ∝

1

h2

√
v`
c`

L∑
n=0

√
cnvn

where v` and c` are the variance an cost of each level.

Expected cost (one of three cases): 1/h2; (log h)2/h2; 1/h2+(1−δ) for δ ∈ (0, 1)
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Multilevel Monte Carlo (MLMC) Performance
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Further Extensions for MLMC Simulation

Exact coupling between Gillespie and tau-leap paths. I.e. MLMC is unbiased
regardless of L;

Adaptive time-stepping, higher-order schemes, implicit schemes;

Analysis and extensions for functions f that are not “nice”;

Multi-index Monte Carlo (for stochastic PDEs);

Randomised bias corrections to enable unbiased estimators when exact simulation is
unavailable.
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MLMC for Inference?

In a Bayesian context, we want to estimate expectation with respect to the posterior
distribution of parameters, θ, given data, D.

E [f (θ) | D] =

∫
f (θ)p(θ | D)dθ,

where p(θ | D) ∝ p(D | θ)p(θ). Sure, we can write down the telescoping sum:

E [f (θ) | D] ≈ E [f (θ0) | D] +
L∑
`=1

E [f (θ`)− f (θ`−1) | D] ,

but what does it really mean here? What are our levels? How do we sample each level?
Coupling mechanisms?

This can get really tricky.
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Application to Inference of Rate Parameters

In real biological studies:

Don’t known kinetic rates, θ = [k1, . . . , kM ];

Observation error, Yt = g(Xt);

Few observations, Yobs = [Yt1 ,Yt2 , . . . ,Ytn ], and n is small.

p(Yobs | θ) intractable (sort of);

MLMC has been very successful in the forwards problem;

How can we use MLMC for the inverse problem?
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Approximate Bayesian Computation (ABC)

The simplest way to implement ABC methods; generates n i.i.d samples from
p(θ | ρ(YS ,Yobs) ≤ ε).

ABC Rejection Sampling

1: for i = 1, . . . , n do
2: repeat
3: Sample prior θ∗ ∼ p(θ)
4: Generate simulated data YS ∼ s(Y | θ∗)
5: until ρ(YS ,Yobs) ≤ ε
6: Set θi = θ∗

7: end for

We want ε small due to bias, but cost per sample ε−q where q is the data dimensionality.
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ABC Rejection Sampling Example

X
k→ Y
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Multilevel ABC Estimator (Warne, Baker, Simpson, 2018)

We introduce MLMC by:

Sequence of thresholds, {ε`}L≥`≥0, with ε` > ε`+1;

Yields ABC approximations θ` ∼ p(θ | ρ(YS
obs ,Yobs) ≤ ε`).

The Monte Carlo estimator, F̂`(s) =
∑L
`=0 Ŷ`(s), for s ∈ RM ,

Ŷ`(s) =


1

n`

∑n`
i=1 GD(s)(θ

i
`) ` = 0

1

n`

∑n`
i=1 GD(s)(θ

i
`)− GD(s)(θ

i
`−1) ` > 0

where GD(s)(θ) is a Lipschitz continuous approximation to 1D(s) (θ) with
D(s) = (−∞, s1]× (−∞, s2]× · · · × (−∞, sM ].
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Coupling Strategy

We update the MLMC estimate iteratively, i.e., when computing Ŷ`(s) we have F̂`−1(s).

1 Sample θ1
`, . . . ,θ

n`
` using ABC with ε`;

2 Let w i
j =

1

n`

∑n`
k=1 1(−∞,0]

(
θk`,j − θi`,j

)
;

3 Generate θ1
`−1, . . . ,θ

n`
`−1 where θi

`−1 =
[
F̂−1
`−1,1

(
w i

1

)
, . . . , F̂−1

`−1,M

(
w i

M

)]
.

DISCLAIMER: This approach is an approximation, so technically the coupling does not
satisfy the telescoping summation (aside from the univariate case).
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A Tractable Example

Susceptible-Infected-Susceptible Model

Spread of disease from infected population, I , to susceptible population, S , with no
immunity.

I + S
k1→ 2I , I

k2→ S

For S0 = 100, I0 = 1, the master equation can be computed exactly, so we can evaluate
convergence in RMSE.
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Numerical Results: Susceptible-Infected-Susceptible
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Further Extensions for MLMC Inference

Really active area of research;

Various extensions to other sampling techniques:

e.g. Markov chain Monte Carlo, sequential Monte Carlo, particle filters;

Likelihood-base and likelihood-free context;

Multifidelity Monte Carlo (a bit like the randomised MLMC idea);

Various applications;

My current work (Warne, Prescott, Baker, Simpson) combing both multilevel and
multifidelity for ABC; This is supported by AustMS and CDS;
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Thank You!
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