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APopul ati on Datao?

A Consider a fundamental source of data, an experiment:
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P the parameters belonging to a single individual i unobserved!
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Why Bother?

A Shunting off all the variability into random effects is sometimes just not good enough

S | | )
"’ ‘ ‘ ‘ To predict what will happen now conditions have

changed, bounce heights are not enough. We need to

‘ ‘ ‘ .x. know ball roundness and bounciness to understand

‘ ‘ how each different ball will respond to a sloped surface.
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Why Bother?

The efficacy of common medications

Differences larger than one standard deviation (that is, SMD >1) between the drug and

placebo groups are uncommon, examples being proton pump inhibitors for reflux esophagitis

[8] or oxvcodone plus paracetamol for postoperative pain [g]. For many other medications

the effect sizes were much smaller. For example, antihypertensive drugs reduced systolic and

diastolic blood pressure by only 10 mmHg and 5 mmHg, respectively [10], the ARD between ARD i Absolute Response Difference

aspirin and placebo for primary prevention of cardiovascular events was only 0.07 % per year

[11], and|the ARD for antidepressants and placebo for major depressive disorder was 17 %

[12].

For an outcome affecting quality of life, Y= of a standard deviation is considered to be a

minimal clinically important difference [13]. Out of 17 common pharmacological treatments

examined, only 11 met this threshold.|In four of them efficacy was represented by surrogate

outcomes, such as diastolic blood pressure or fasting plasma glucose, and not patient-oriented
outcomes, such as pain, mortality or adverse events. Therefore, patients might not have

experienced substantial benefits related to their well-being and quality of life after therapy (Leucht et al. 2015)
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The Heart of the Matter

A The electrical signalling that drives the heartbeat is a primary example of population variability in
action, and a topic of active research in the area

Dofetilide

Dofetilide is a class Iil antiarrhythmic agent.!']

Adverse effects [edit]

Torsades de pointes is the most serious side effect of dofetilide therapy.
The incidence of torsades de pointes is 0.3-10.5% and is dose-related
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A The electrical signalling that drives the heartbeat is a primary example of population variability in
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Adverse effects [edit]

Torsades de pointes the most serious side effect of dofetilide therapy.
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The Heart of the Matter

A The electrical signalling that drives the heartbeat is a primary example of population variability in
action, and a topic of active research in the area

Dofetilide

Dofetilide is a class Iil antiarrhythmic agent.!']

Adverse effects [edit]

Torsades de pointes is the most serious side effect of dofetilide therapy.
The incidence of torsades de pointes is 0.3-10.5% and is dose-related
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The Heart of the Matter

A The muscle cells that characterise the heart respond to electrical signals:

A Ca2* ion influx

triggers cell
/ contraction
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The Heart of the Matter

A The muscle cells that characterise the heart respond to electrical signals:

K* ion efflux

returns cell
/ to rest state
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Body Over Mind

A Despite the sophisticated voltage-driven control of their ion channels, heart cells are mindless:

A Wait for signal
A If | get a signal, activate and pass signal onto my neighbours
A Intake Ca2* ions and contract

A Gradually return to the rest state, and await next signal
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Body Over Mind

A Despite the sophisticated voltage-driven control of their ion channels, heart cells are mindless:

A Wait for signal
A If | get a signal, activate and pass signal onto my neighbours
A Intake Ca2* ions and contract

A Gradually return to the rest state, and await next signal

A In the healthy heartbeat, a small node triggers a wave that moves through the heart tissue and
cells contract in a synchronised manner
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Simulation Science

A In a setting like the heart (and many others in medicine, and also outside of medicine), we
cannot measure the parameters, P, let alone experimentally control them

A We do, however, know that P varies wildly between people

A Computer simulation becomes invaluable
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Simulation Science

A In a setting like the heart (and many others in medicine, and also outside of medicine), we
cannot measure the parameters, P, let alone experimentally control them

A We do, however, know that P varies wildly between people

A Computer simulation becomes invaluable

ébut we really do want our computer model s to
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Aside: The Mathematics of Heart Signalling

A To simulate a system, we must explicitly describe its operation:

Qo P ‘O (Heart cell as capacitor)
Qo 8 g
A An example current:

. o~ o . . Y'Y ([0®]
(@ Q a Q@ O ) O T)I ([Gd)] >

QG ™ TP O , o,
06 p Q 8 8)(p ad) 1R d
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A To simulate a system, we must explicitly describe its operation:
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A An example current:
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A To simulate a system, we must explicitly describe its operation:
Qo P ‘O (Heart cell as capacitor)
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A An example current:
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Aside: The Mathematics of Heart Signalling

A To simulate a system, we must explicitly describe its operation:
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A To simulate a system, we must explicitly describe its operation:
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Aside: The Mathematics of Heart Signalling

A To simulate a system, we must explicitly describe its operation:

AGIDL
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Spread of excitation to neighbours
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Aside: The Mathematics of Heart Signalling

A To simulate a system, we must explicitly describe its operation:

TT_‘;’ () 0

Excitation and refractoriness
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Aside: The Mathematics of Heart Signalling

A To simulate a system, we must explicitly describe its operation:
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We have very complex dynamics, well-described but
highly parameter dependent. The perfect setting to
explore some variability!
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Finally: Population Calibration

A We now return to our population data paradigm

' QP )

Individual

Observations ATrut ho

2 We dondt want t o ma
— observations. We want the spread
across the population
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éhear me out



Sz::'s;z:,ce
Finally: Population Calibration

A We want a distribution on the parameters in response to some data. Sounds Bayesian.

IGDERIGLHION

accept
frequently

|

accept
rarely

eperhaps it wor ks i
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ALet 6s consider a very simplified example, wher
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A Population calibration here:

Our observed data tells us that A g 00 c Ol Al
40% people exhibitin A maol € Pé &4

What does this imply for the spread (—) e
of genes in the population?

Let us also simplify by assuming all ‘ D
DNA values are equally likely n—= —
(uniform prior)
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NoO.

A Setting aside the maths notation, the answer is perhaps obvious:

40% of people have CG

60% of people have every other combination,
distributed equally across each
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NoO.

AThe fiBayesiano appr &adabackwdardswever, does it

Generate a | Check what kind I Accept based on
random DNA pair of person we get population frequency

— » 0— N o
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NoO.

AThe fiBayesiano appr &adabackwdardswever, does it

Generate a | Check what kind I Accept based on
random DNA pair of person we get population frequency
— “ "Q— i &
We naturally sample We get lots of We accept many

tons of non-CG pairs non-small people of these samples
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Mathematically

Secretly this is just a change of variables:

n(w n— —) ()

Under the condition of a uniform prior, we have:

‘ (o "4-)
e T

Generalising this to multivariate, continuous variables gets much tougher
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Mathematically

Secretly this is just a change of variables:

n(w n— —) ()

Under the condition of a uniform prior, we have:

Proportion of the population

r]((*) Q%) demonstrating this outcome
N Ta=

W | Divided evenly across all
parameters that produce
that outcome

Generalising this to multivariate, continuous variables gets much tougher
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Paul Baggenstoss (2017)

A solo author who mostly only cites himself gave me the answer:

2P C @@ o demonsiaing s utcome
. Y P ) (P)} (’QP) ‘ ) IP Divided appropriately across

all parameters that produce
that outcome

We can incorporate
prior information too

Pretty sure measure theory can handle this too, but, uhhé
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Paul Baggenstoss (2017)

A solo author who mostly only cites himself gave me the answer:

AP) G INDLICRN demonsiaing s owcome
Cp PN CAP) O

Divided appropriately across
all parameters that produce
that outcome

We can incorporate
prior information too

Pretty sure measure theory can handle this too, but, uhhé

Also, this is still two multi-dimensional integrals that rely on knowing how
‘P)behaves (which we donoét)
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1. 1l gnore all this and go back to th

2. Replace "@P) with a more manageable model
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Back to Bayesian

We can take advantage of some powerful sampling
techniques to find good P values. | like sequential Monte
Carlo (SMC).

1. Initialise a bunch of particles without caring

accept
about good P values P

frequently

Determine based on how good our current
particles are how much o
complexity we can safely introduce

Copy each particle onto a random other, but
biased towards the good particles

ARJiggled each particle i
sampling problem

Repeat until all of the problemd s compl exi ty has
been introduced and we thus have an answer
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Back to Bayesian

We can take advantage of some powerful sampling
techniques to find good P values. | like sequential Monte
Carlo (SMC).

1.

Sample 0 particles across particle space using
the prior, setT 1

Determine| such that
P

B [n(« )]

Resample these particles according to their
normalised weights,

NI
B [n(« )]

Apply MCMC move steps to regain unique
particles,

00 1 QA[

M‘ (PP )
K (P &)

Repeat from step 2 untilf  p

accept
frequently

|

W

u(P<P ) the jumping/proposal
distribution for MCMC
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Back to Bayesian

We have seen already the issues with taking this naive Bayesian approach,
so we rely on a post-processing step to repair the distribution:

1. Sample a large number of particles using SMC

Try to find the optimal subpopulation of these particles in terms of fit to
the spread of the data

1. Start with all particles included

2. Pick a particle at random, and consider removal/re-inclusion

3. Choose whether to accept this change according to the change in
goodness 3, with

0 GAA KA B ERpiQ T)
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Back to Bayesian

We have seen already the issues with taking this naive Bayesian approach,
so we rely on a post-processing step to repair the distribution:

1. Sample a large number of particles using SMC

Try to find the optimal subpopulation of these particles in terms of fit to
the spread of the data

1. Start with all particles included

2. Pick a particle at random, and consider removal/re-inclusion

3. Choose whether to accept this change according to the change in
goodness 3, with

0 G\A KA B ERpiQ T)

This approach is nice as we have all requisite data already i works quickly
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