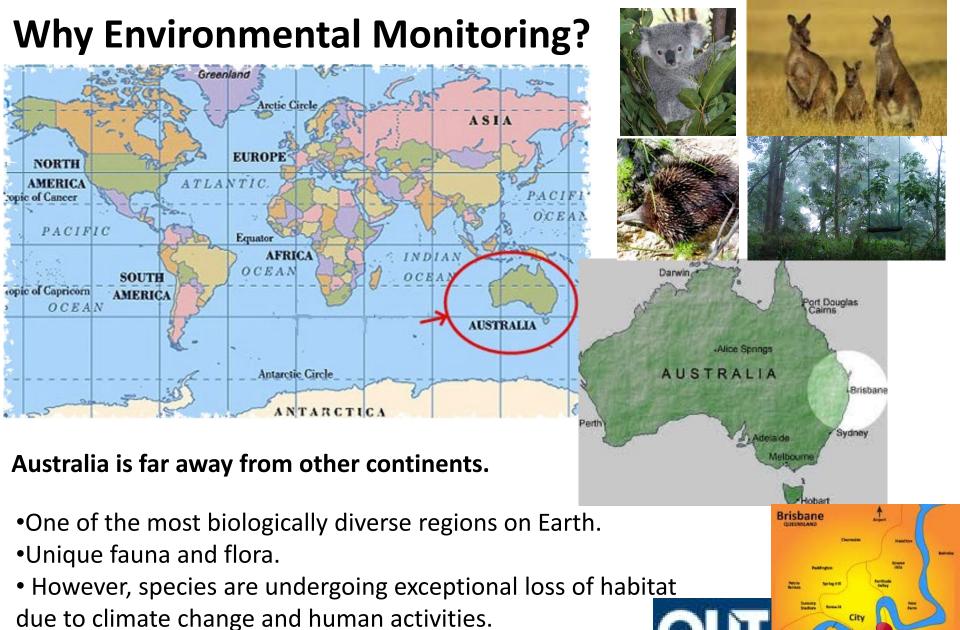
Analysing Big Audio Data for Environmental Monitoring

Jinglan Zhang

School of Computer Science



Queensland University of Technology

Megadiverse Countries

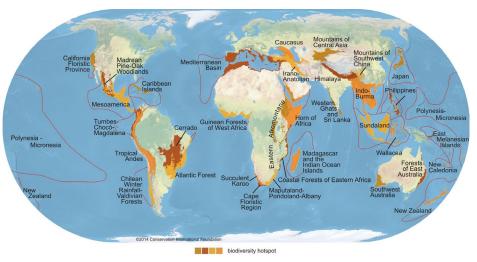
- · Species are not distributed evenly
- 17 countries are 'megadiverse'
- has less than 10% of the global surface, but support more than 70% of the biological diversity on earth.
- represent more than two-thirds of all life forms and the majority of tropical rainforests, coral reefs and other priority systems.
- Australia has 600,000 and 700,000 species, many of which are endemic
 - 84% of our plant species, 83% of mammals, 89% of reptiles, 90% of fish and insects, 93% of amphibians, and 45% of birds are endemic.

•Australia

- •The Congo
- •Madagascar
- South Africa
- China
- •India
- Indonesia
- Malaysia
- •Papua New Guinea
- Philippines
- •Brazil
- Colombia
- Ecuador
- Mexico
- •Peru
- United States
- Venezuela

Biodiversity Hotspots

- Terrestrial regions with exceptional concentrations of endemic species that are undergoing exceptional loss of habitat: irreplaceable and threatened
- Southwest Australia and Eastern coastal Australia are two of the world's Biodiversity hotspots
- The extinction crisis is vast
 - Human activities (hunting, land management, non-native species), Climate change, Disease
 - Since European settlement, more than 50 species of Australian animals and over 60 species of Australian plants have become extinct.
- The conservation funds are limited
- Targeted protection in nature's most important places
 - Biodiversity underpins all life on Earth.
 - Biodiversity Hotspots also hold some of the highest human population
 - human-biodiversity impacts lies not in human density but rather in human activity
 - For our own sake, we need to protect bio-diversity



CHARM Fation (Little)

Paradise Parrot

Mount Glorious day frog

Extinct from Queensland

Why sensing?

- Regular field visit and call count
 - Time consuming
 - High cost
 - Influenced by weather or observation bias

- Passive acoustic sensing
 - Time saving for people
 - Low cost: price keeps falling
 - Large spatiotemporal scales
 - Less invasive

Servick, K. (2014). Eavesdropping on ecosystems.

Why acoustic sensing?

- Many animals actively produce sound for communication
- Some animals are very small or criptic

- Affordable recording devices
- Sound travels
 - Wide range and not directional
- Archive of nature sound at large space over long time
- Tractable analysis

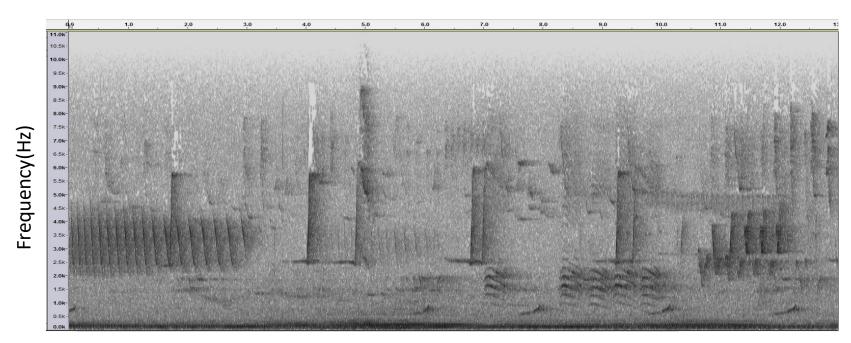
Servick, K. (2014). Eavesdropping on ecosystems.

Environmental Audio

Problem: Recordings can be 1000s of hours long, making them infeasible to listen through manually.

13sec long audio recording

Time(s)



What is EcoAcoustics?

Ecoacoustics is an interdisciplinary science that investigates natural and anthropogenic sounds and their relationship with the environment over a wide range of study scales, both spatial and temporal, including populations, communities, and landscapes.

eScience: The Fourth Paradigm

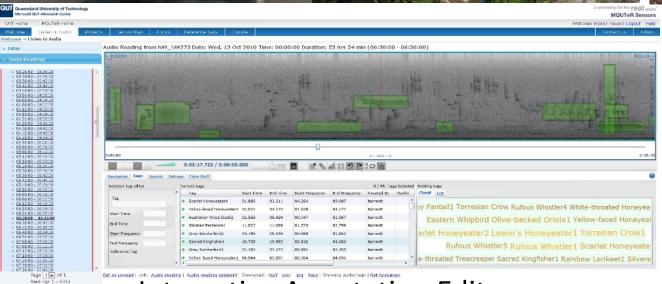
- Data-Intensive Scientific Discovery

- New mantra:
 - Data is the new Intellnside
 - Gather whatever data you can whenever and wherever possible.
- Assumption: Data has/will have value
- New Phenomenon: Data collected at enormous speeds
 - Remote sensors on a satellite:
 - NASA archives over petabytes of earth science data / year
 - Sensors in the sky, on the ground, under the water
 - A20
- Expectations: Data and software help scientists
 - manipulate and explore massive datasets
 - e-Science: Big data, complex computation, visualization

We aim to understand and address the most pressing threats to the diversity of wildlife through data and software engineering.

Acoustic Biodiversity Sensing

https://www.ecosounds.org/



Interactive Annotation Editor

We aim to develop new tools to enable new forms of ecological research via acoustic sensing.

QUT ecoAcoustics

- data science, computer science, and CHI
- ecoInformatics: IT meets ecology through sensors and ubicomp
- Acoustic sensing: scale biodiversity observations
 - Birds, frogs, koalas, quolls ...
 - Marine life (future)
- Hardware and software tools for sensing the environment
 - Ecological apps, participatory sensing, citizen science

Research Problem

ecoAcoustic Analysis for Environmental Monitoring

Ecology problems

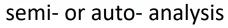
- Species presence/absence analysis (e.g. Endangered/Intrusive species detection)
- BioDiversity analysis
- Abundance/population analysis
- Habitat health assessment
- Correlation analysis (spatial, temporal, species, environment ...)
- Behavioural studies

IT problems

- Big data collection, storage, management
- Big data analysis
 - Event detection
 - Find event like this
 - Data mining: clustering, classification, association rules, outlier detection
 - Visualization
- Human data interaction
 - Interface, exploration
- Techniques to support citizen science
 - Engaging community: web apps, mobile apps for participatory sensing/analysis
 - Empowering community: sound and annotation library

Data Flow in Acoustic Sensing





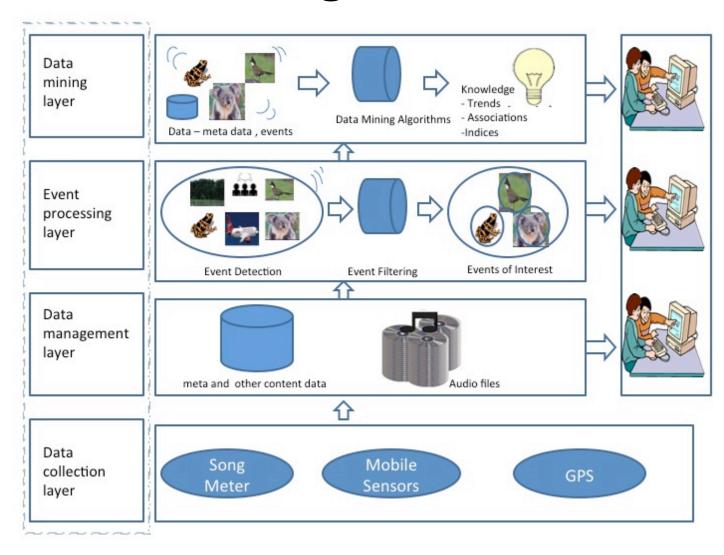
- identifying species
- Measuring biodiversity nce Under the Hood
 Tracking changes EcoAcoustics 2020
- Tracking changes

IT Scientists
Develop tools

Ecologists

Manual analysis

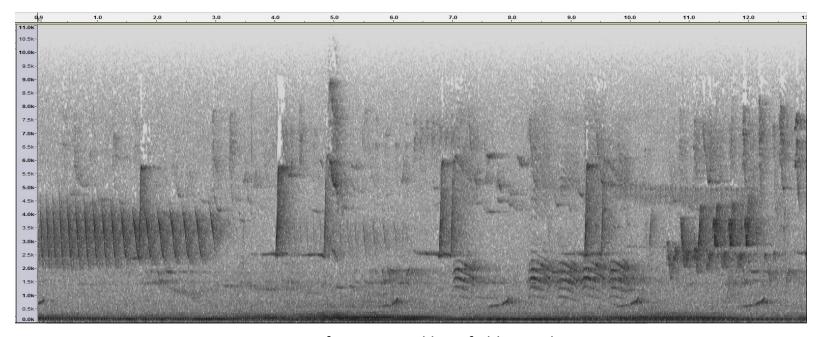
Data Management Framework



Multi-layer data management for environmental monitoring via Acoustics

- Lab audio data vs. environmental audio data
 - location: quiet room vs. wild area
 - sound sources: unique vs. multiple (e.g. multiple bird species, rain, wind, thunder, human speech, traffic, machinery, frogs, cicada)
 - An example

Time(s)



A spectrogram of a 13-second long field recording.

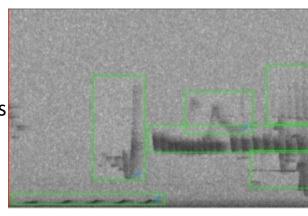
Challenges of Audio Analysis in Environmental monitoring

- Sound are recorded from field directly over large area and long term
 Big Data: Large volume, high increment velocity
 - Sensors work 24/7
 - 24TB of audio ≈ 50 years to listen to all of it
 - Less than 0.4% of audio analysed by experts
- Noise: weather noise, human-made noise, recording device noise,
- Overlapping sounds from different sources: fauna calls, environment sound, human made sound e.g. car
- Variation: time, temperature, individuals, species, region, distance from microphone, environment, equipment
- Dynamic, unstructured and unpredictable
- Opaque: Audio data is much more difficult to handle than textual or scalar values EcoAcoustics 2020

EcoAcoustic Analysis Approaches

Analysis = input audio \rightarrow output annotations

- Manual (human computation)
 - Simple
 - Humans are exceptional classifiers / pattern recognisers
 - Slow, difficult, doesn't scale, requires huge workforce
- Automated Analysis with algorithms
 - Algorithmic, efficient, ideal, scales well, some success
 - Hard and time consuming to develop and test
 - Needs lots of training data
- Semi-automated (human-in-the-loop)
 - Combine complementary aspects of humans and machines
 - · Machines and algorithms can
 - process large amounts of data
 - learn off human input
 - reduce work load for a human
 - Humans
 - Amazing visual recognition ability
 - Advanced classification skills
 - Social logic discuss with others
 - Creative reasoning can apply knowledge, skill and reasoning without needing to encode it into an algorithm



Manual EcoAcoustic Analysis

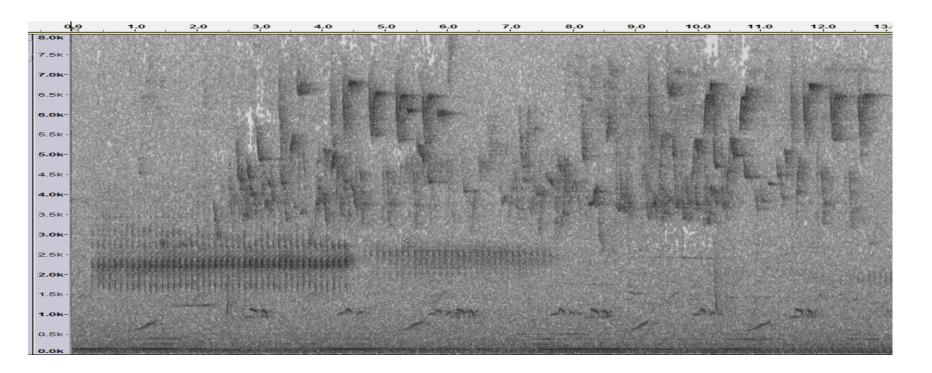
- Human computation
 - Listen through
 - Manually scan spectrogram (faster than listening)
 - Simple, context aware, but slow
- Citizen science approach
- Problem: Data quality
- Solution 1: Reputation modelling
- Solution 2: Collaborative Analysis
- Solution 3: Statistics

Yang, Hao-Fan, Zhang, Jinglan, & Roe, Paul (2013) <u>Reputation modelling in Citizen Science for environmental acoustic data analysis</u>. *Social Network Analysis and Mining*, *3*(3), pp. 419-435.

Truskinger, Anthony, Yang, Hao-Fan, Wimmer, Jason, Zhang, Jinglan, Williamson, Ian, & Roe, Paul (2011) <u>Large scale participatory acoustic sensor data analysis: Tools and reputation models to enhance effectiveness.</u> In Laure, E & Henningson, D (Eds.) *Proceedings of the 2011 Seventh IEEE International Conference on eScience.* IEEE Computer Society Conference Publishing Services, United States, pp. 150-157.

Collaborative exploration and sensemaking of Audio

- Human scan through the spectrogram
- Human discuss with each other and cross check the result



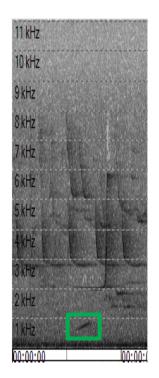
Dema, Tshering, Brereton, Margot, Cappadonna, Jessica Lea, Roe, Paul, Truskinger, Anthony, & Zhang, Jinglan (2017) <u>Collaborative exploration and sensemaking of big environmental sound data.</u> *Computer Supported Cooperative Work*, 26(4 - 6), pp. 693-731.

EcoAcoustic Analysis Approaches (Cont.)

Semi-Automated (human-in-the-loop)

Human creative thinking and reasoning + machine fact gathering and computation but requires some human intervention

- Online species identification library
- Suggestion tool: Information filtering using machine intelligence
- Spectrogram scanning
- Tag validation, correction, and linking
- Visualization: easy to use and understand
- Online collaboration tool (future work)



Brown Cuckoo-dove

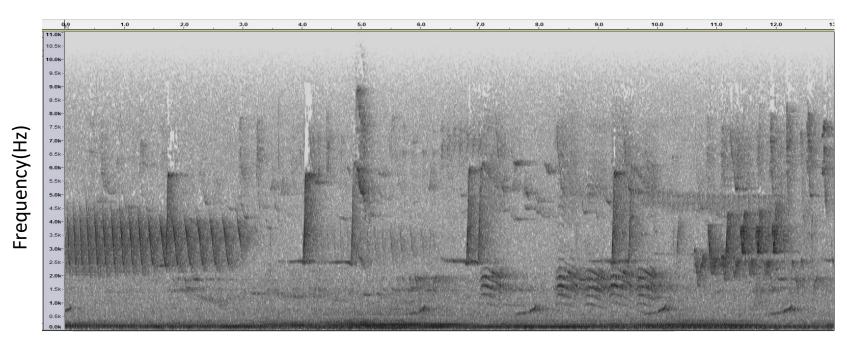
Audio Visualization

It help people:

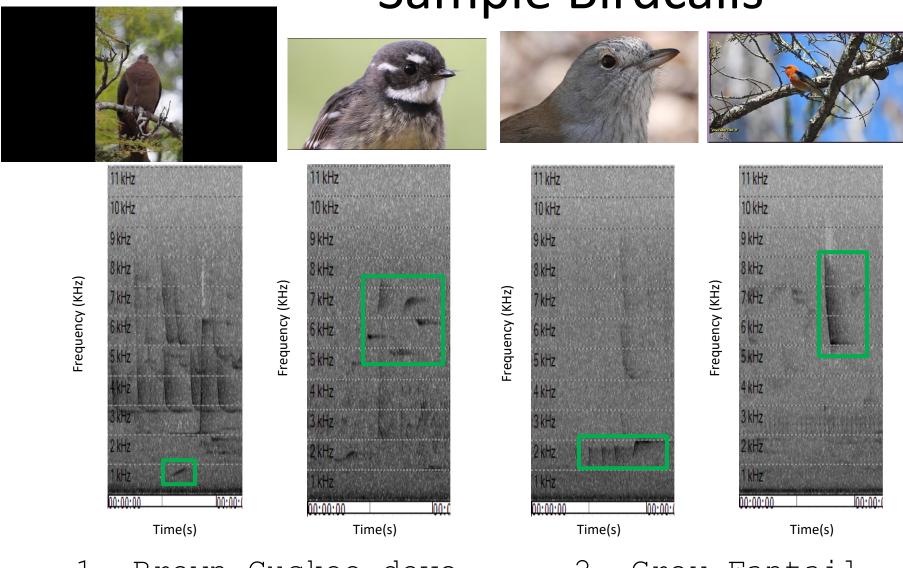
- name different kinds of sounds for clearer communication;
- increase "ear-recognition" skill by engaging visual memory in building a library of known sounds;
- evaluate recordings.

13sec long audio recording

Time(s)

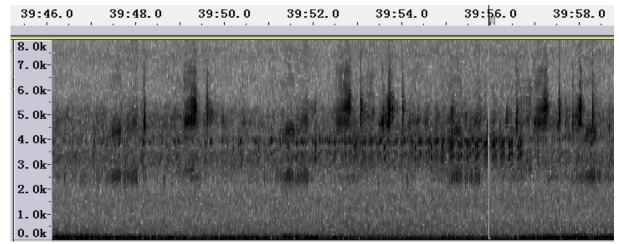


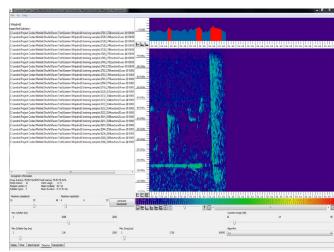
Sample Birdcalls



- Brown Cuckoo-dove
 Grey Shrike-thrush
- 2. Grey Fantail
 4. Scarlet Honeyeater
 22

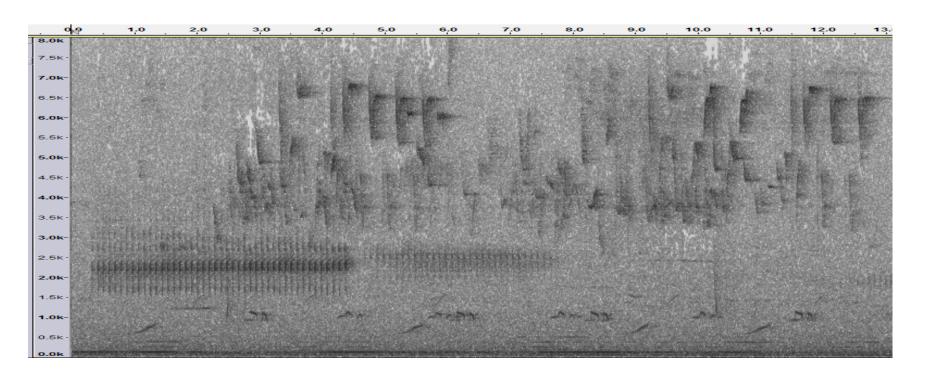
Audio Visualization - Spectrogram





Human Machine Teaming To Make Sense Of Audio

- Human scan through the spectrogram
- Machine scan through the spectrogram
- Human cross check the result



Dema, Tshering, Zhang, Liang, Towsey, Michael, Truskinger, Anthony, Zhang, Jinglan, Brereton, Margot, et al. (2017) <u>An investigation into acoustic analysis methods for endangered species monitoring: A case of monitoring the critically endangered white-bellied heron in Bhutan.</u> In Bubendorfer, K (Ed.) *Proceedings of the 2017 IEEE 13th International Conference on e-Science (e-Science).* Institute of Electrical and Electronics Engineers (IEEE), United States of America, pp. 177-186.

Acoustic index

Weeks, Months or even years of recordings **Acoustic indices** Ratio of natural sound

Describe the acoustic environment

and anthrogogenic sound

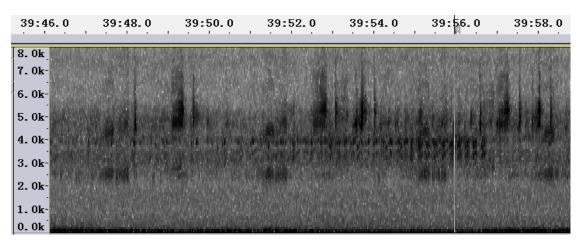
To characterize biodiversity

Acoustic index

- Acoustic indices are designed to reflect acoustic properties of audio recordings of the natural environment.
- A summary index is a scalar representing the entire segment of a recording.
- A spectral index is a vector (256)
 representing a summary spectrum
 for a segment, each element
 representing the index value for a
 frequency bin.

What they measure

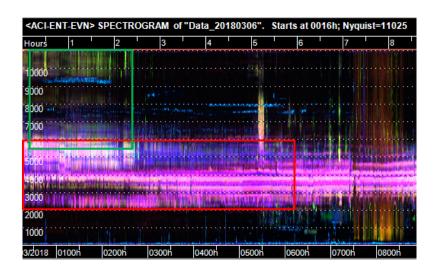
- PMNsp, Power Minus Noise of each frequency bin equals to the maximum decibel value minus decibel background noise value.
- ACIsp, Acoustic Complexity Index quantifies the relative change in acoustic intensity.
- **EVNsp**, is the the number of acoustic events per minute in each frequency bin.
- CVRsp, is the the proportion of cells in each frequency bin of the spectrogram where the spectral power exceeds 3 dB



Audio Visualization

- False Color Spectrogram

 Generated by mapping three spectral indices to the primary colors, red, green and blue (RGB) respectively.



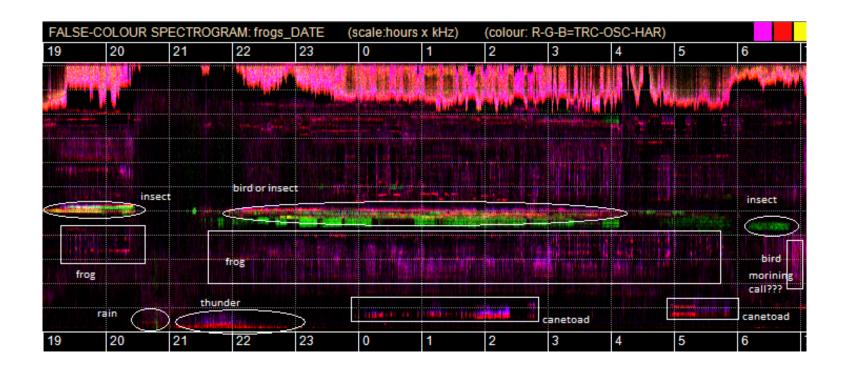
From 00:00 am to 2:30 am, there is green vertical lines at the top (9500-11025 Hz), synchronising with the pink lines (mixed with some green and yellow lines) below. That indicates the intense chorusing of two frog species.

After 02:30 am, L. fallax reduced their call frequency and L. olongburensis dominant the acoustic space.

A false color spectrogram of 8.5 hours recording (ACI-R, ENT-G, EVN-B)

Gan, Hongxiao, Zhang, Jinglan, Towsey, Michael, Truskinger, Anthony, Stark, Debra, Van Rensburg, Berndt, et al. (2019) <u>Recognition of frog chorusing with acoustic indices and machine learning.</u> In Gupta, A (Ed.) *Proceedings - IEEE 15th International Conference on eScience, eScience 2019.* IEEE, United States of America, pp. 106-115.

False-color Spectrogram



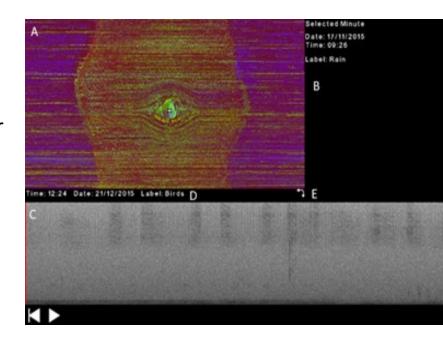
Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., & Roe, P. (2014). Visualization of long-duration acoustic recordings of the environment. Procedia Computer Science, 29, 703-712.

Audio Visualization

- Multi-scale Multi-view Exploration

-Use different scales to compliment each other to overcome the issue time-window size

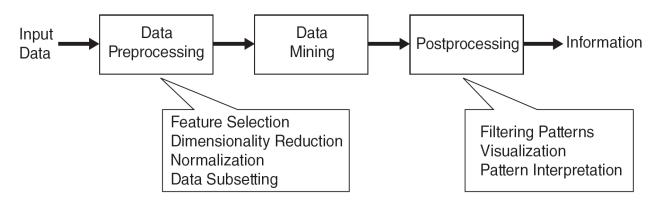
- -Utilises a large time window diel plot for the purpose of navigation and to view long-duration trends
- -small time window spectrogram is utilised for viewing smaller time-scale events
- -issues that need to be overcome
 -not being able to view events that
 require a medium sized time window
 -confusing to navigate



Rowe, Benjamin, Zhang, Jinglan, Towsey, Michael, Roe, Paul, & Brereton, Margot (2018) <u>Ecosound-explorer: a method for large scale interactive visual navigation of environmental acoustic data.</u> In Choi, J H J, McKay, D, Kelly, R, Waycott, J, Lugmayr, A, Morrison, A, et al. (Eds.) *Proceedings of the 30th Australian Conference on Computer-Human Interaction (OzCHI 2018).* Association for Computing Machinery, United States of America, pp. 539-543.

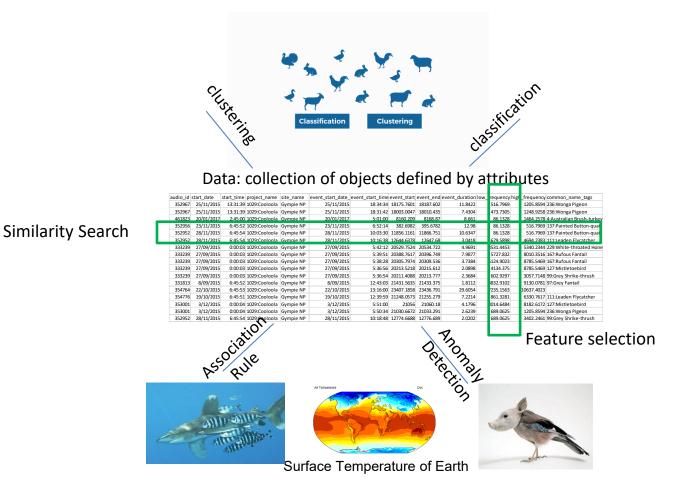
Automated EcoAcoustic Analysis

- Machine learning and pattern recognition techniques
 - Feature Extraction: MFCC, ZC, energy, entropies,
 - Classification/clustering: DT, RF, SVM, ...
 - Recognition: statistic, syntactic, template-based efficient, scalable but low accuracy

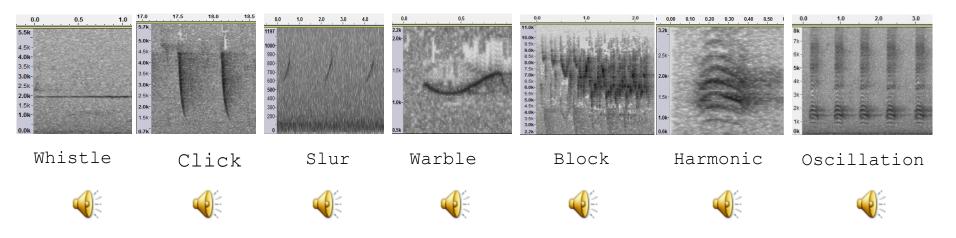


Zhang, Liang, Towsey, Michael, Xie, Jie, Zhang, Jinglan, & Roe, Paul (2016) <u>Using multi-label classification for acoustic pattern</u> <u>detection and assisting bird species surveys.</u> *Applied Acoustics*, *110*, pp. 91-98.

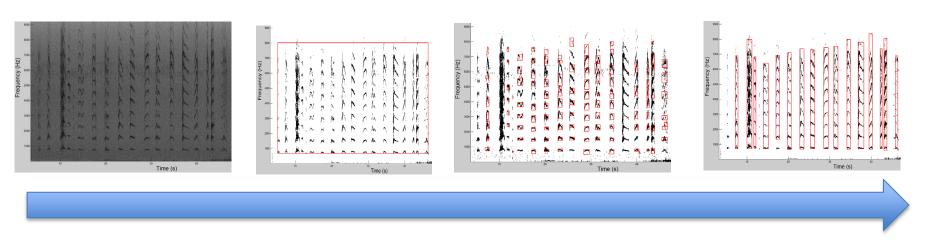
Automated Audio analysis



Acoustic Component Detection



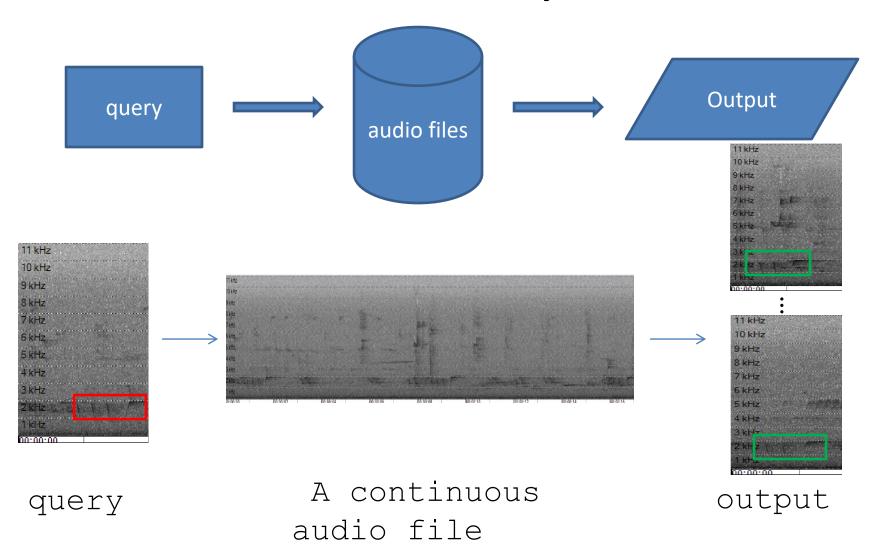
Acoustic Component Definition



Duan, S., Towsey, M., Zhang, J., Truskinger, A., Wimmer, J., & Roe, P. (2011, 6-9 Dec. 2011). *Acoustic component detection for automatic species recognition in environmental monitoring*. Paper presented at the Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2011 Seventh International Conference on.

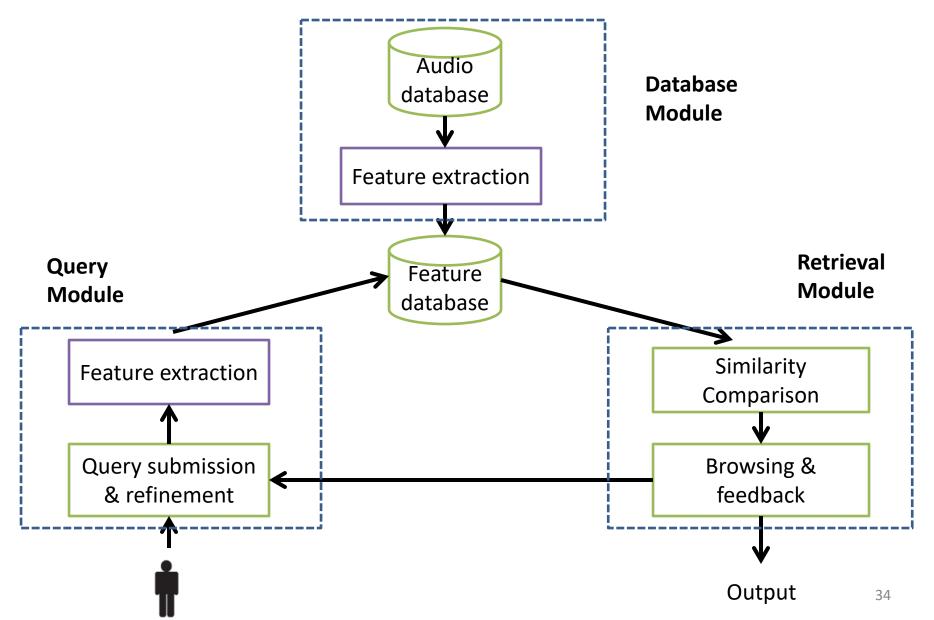
Data Science Under the Hood EcoAcoustics 2020

Bird Call Similarity Search

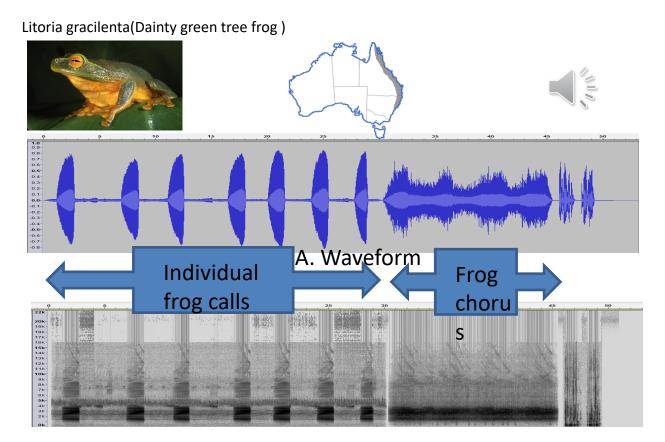


Dong, Xueyan, Towsey, Michael, Truskinger, Anthony, Cottman-Fields, Mark, Zhang, Jinglan, & Roe, Paul (2015) <u>Similarity-based birdcall retrieval from environmental audio.</u> *Ecological Informatics*, 29(Part 1), pp. 66-76.

Content-based audio retrieval



Frog call analysis for environmental monitoring



B. Spectrogram

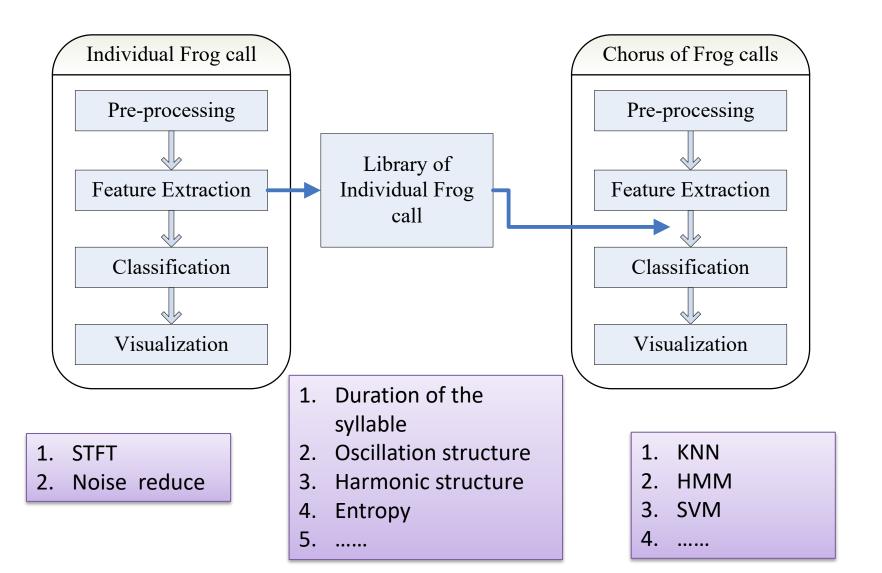
Xie, Jie, Towsey, Michael, Zhang, Jinglan, & Roe, Paul (2016) <u>Adaptive frequency scaled wavelet packet decomposition for frog call classification</u>. *Ecological Informatics*, *32*, pp. 134-144.

Xie, Jie, Towsey, Michael, Zhang, Jinglan, & Roe, Paul (2016) <u>Acoustic classification of Australian frogs based on enhanced features and machine learning algorithms.</u> *Applied Acoustics*, *113*, pp. 193-201.

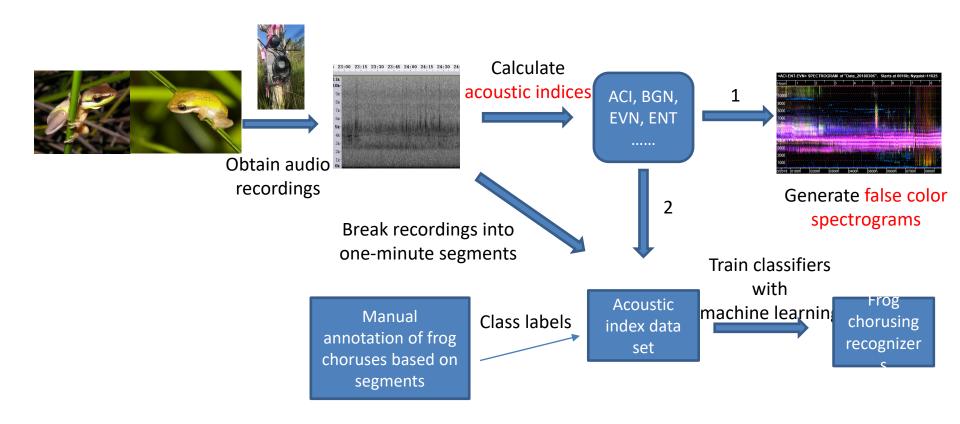
Xie, Jie, Towsey, Michael, Truskinger, Anthony, Eichinski, Phil, Zhang, Jinglan, & Roe, Paul (2015) <u>Acoustic classification of Australian anurans using syllable features.</u> In Tan, H P & Palaniswami, M S (Eds.) *Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2015).* IEEE, United States of America, pp. 1-6.

Xie, Jie, Towsey, Michael, Zhang, Jinglan, Dong, Xueyan, & Roe, Paul (2015) <u>Application of image processing techniques for frog call</u> <u>classification.</u> In Labeau, F & Thiran, J P (Eds.) *Proceedings of the 2015 International Conference on Image Processing (ICIP).* IEEE, United States of America, pp. 4190-4194.

Block diagram of the frog call recognition system

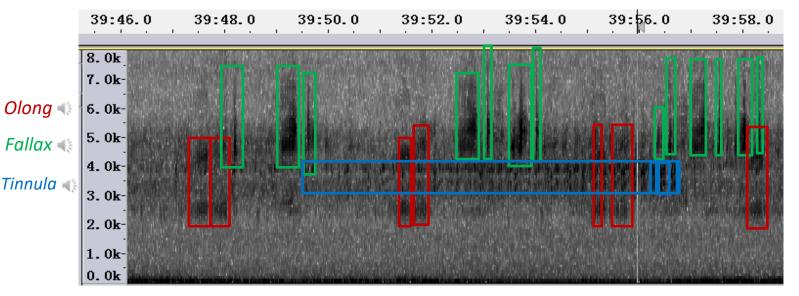


Frog Chorusing Recognizers with Indices



Gan, Hongxiao, Zhang, Jinglan, Towsey, Michael, Truskinger, Anthony, Stark, Debra, Van Rensburg, Berndt, et al. (2019) <u>Recognition of frog chorusing with acoustic indices and machine learning.</u> In Gupta, A (Ed.) *Proceedings - IEEE 15th International Conference on eScience, eScience 2019.* IEEE, United States of America, pp. 106-115.

Frog calls of target species



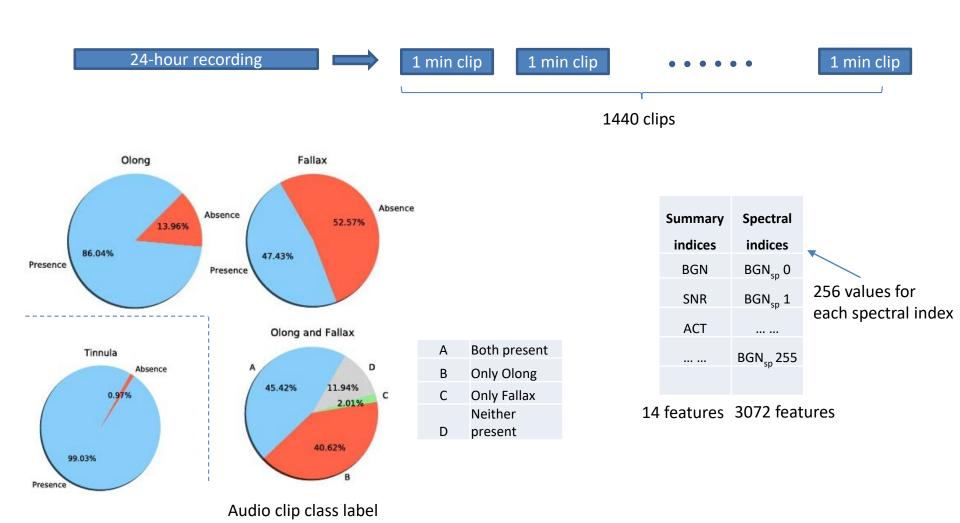
- Olong calls with two dominant frequency bands in red boxes.
- Fallax calls in green boxes.
- Both of their calls have oscillations, and *L. fallax* calls have high a oscillation rate.

Wallum Sedgefrog, Litoria olongburensis

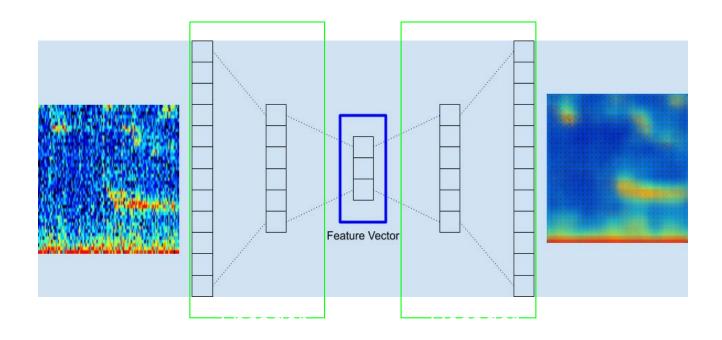
Eastern Sedgefrog, Litoria fallax

Wallum Froglet, Crinia tinnula

Index-based frog classification



Deep learning for Audio Analysis



J Xie, R Zeng, C Xu, J Zhang, P Roe, Multi-label classification of frog species via deep learning, 2017 IEEE 13th International Conference on e-Science (e-Science), 187-193

Conclusion

- Manual analysis
 - accurate and comprehensive
 - high cost: highly trained experts, time consuming
 - limited spatiotemporal scale
- Automated analysis
 - powerful
 - not very accurate yet: difficult to deal with noise and variations
 - Specific recognisers perform better than generic ones
- Semi-automated annotation
 - needs some human intervention
 - allows quality data analysis now
 - allows harvest of citizen intelligence

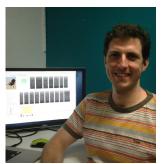
Conclusion (Cont.)

- We can leverage on both human and machine intelligence
 - Providing searching and suggestion tools based on machine intelligence
 - Providing visualization tools for easy interaction
 - Providing data linking and sharing tools for collaboration
 - Exporting clean and rigorous data for human to further interpret
- Still plenty of research questions to be answered

Future work

- Data mining
- Human data interaction
- Engaging citizen scientists
- Web Apps
- Mobile apps

Thanks to my colleagues and students



Thanks for listening

Questions?

Dr. Jinglan Zhang

Email: jinglan.zhang@qut.edu.au

Ph:61 7 3138 9353

Web: http://staff.qut.edu.au/staff/zhang2/

Queensland University of Technology

