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Introduction Statistical Modelling

Why Statistical Modelling?

Gain insight into underlying biology, physics etc of a real process.

Perform hypothesis testing (e.g. is a new drug effective?).

Use the model to make predictions and perform “what-if" scenarios.

Generative (or mechanistic) models: model underlying mechanisms
responsible for generating the data.
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Introduction Parameter Estimation

Why Parameter Estimation?

Models typically have unknown parameters (θ). For models to be most
useful we need values for the parameters.

Natural approach: collect data from real system and estimate the
parameters based on the data (sometimes referred to as “calibration").
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Introduction Bayesian Statistics

Introduction to Bayesian Statistics

The Bayesian approach treats θ (vector) as a random variable.

Information about θ before data collection encapsulated in prior
distribution p(θ).

Combine with the information we obtain about θ from the data y
quantified by the likelihood function p(y |θ). Using Bayes’ rule

p(θ|y) =
p(y |θ)p(θ)

p(y)
∝ p(y |θ)p(θ),

where p(θ|y) is called the posterior distribution.
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Introduction Bayesian Statistics

Simple Example

Consider tossing a two-sided coin 10 times with unknown probability θ
of getting a head.

Assume that in 10 tosses we get y = (1,1,1,1,0,0,1,1,1,1) (i.e. 8
heads).

What is the posterior distribution for θ?
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Introduction Bayesian Statistics

Simple Example (Cont...)

The number of "successes" out of a fixed number of trials has a
binomial distribution. Thus the likelihood function is

p(y |θ) =

(
10
8

)
θ8(1− θ)2.

A vague prior on θ may be uniform over (0,1), p(θ) = 1, 0 < θ < 1.

Chris Drovandi Data Science Under the Hood 6 / 34



Introduction Bayesian Statistics

Simple Example (Cont...)

We can show that p(θ|y) is Beta(9,3) where Beta(α, β) is the beta
distribution with parameters α and β.
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Introduction Bayesian Statistics

Bayesian Computational Algorithms

In most cases we don’t know the form of the posterior distribution.

Computational algorithms (such as Markov chain Monte Carlo) have
been designed to generate ‘samples’ from the posterior distribution.

We can use these samples to estimate posterior quantities.

However, standard methods still require evaluation of the likelihood
function.
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Introduction Bayesian Statistics

MCMC on coin tossing example
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Introduction Bayesian Statistics

Break for questions
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Introduction Intractable Likelihoods

Can’t Compute the Likelihood?

For many complex models the likelihood function is not available.

But, often we can simulate/run the model for any given value of θ to
produce (pseudo) data.

Can we estimate θ based only on model simulations?
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Introduction Motivating Example

Motivating Example – Collective Cell Spreading

Stochastic models of collective cell spreading are important for
understanding processes such as cancer spread.

Parameter estimation is important for investigating the impact of drug
treatments.

Drug treatments can be more effective during different phases of the
cell cycle.

Here we consider a stochastic model of collective cell spreading1,
where cells move on a 2D hexagonal lattice and go through four
phases.

1Simpson et al (2018). Physica A. 510:375-386.
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Introduction Motivating Example

Motivating Example – Simulation Model

Algorithm 1 Collective Cell Spreading Model

1: Compute number of cells (Nred, Nyellow, Ngreen) in domain(x,y).
2: Compute ar = Pr × Nred , tr = Kry × Nred
3: Compute ay = Py × Nyellow , ty = Kyg × Nyellow
4: Compute ag = Pg × Ngreen, tg = Kgr × Ngreen
5: Compute a0 = ar + ay + ag + tr + ty + tg and R = u(0,1)
6: If R ≤ ar

a0 then Red cell migrates
7: else if R ≤ ar+ay

a0 then Yellow cell migrates
8: else if R ≤ ar+ay+ag

a0 then Green cell migrates
9: else if R ≤ ar+ay+ag+tr

a0 then Red to Yellow cell transition
10: else if R ≤ ar+ay+ag+tr+ty

a0 then Yellow to Green cell transition
11: else Green cell division and transition into red cells
12: Compute τ = 1

a0 × log( 1
u(0,1)) and Set t = t + τ

13: repeat until t < tstop
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Introduction Motivating Example

Motivating Example
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Introduction Motivating Example

Motivating Example

Here we consider tracking a certain number of cells for 48 hours.

The likelihood function is not available, but model simulation is
relatively straightforward.

How can we estimate the parameters?
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Approximate Bayesian Computation Introduction

Approximate Bayesian Computation

Let’s start with Bayes’ rule:

p(θ|y) ∝ p(y |θ)p(θ).

Here we can’t compute p(y |θ) directly, consider:

p(y |θ) =

∫
x

1(x = y)p(x |θ)dx ,

where x is data simulated from the model at θ. We can estimate this
integral by taking a single simulation (or multiple).
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Approximate Bayesian Computation Introduction

Approximate Bayesian Computation

In general, it’s not feasible to match x and y exactly, so we introduce a
distance function ρ and tolerance ε: 1(ρ(y , x) ≤ ε).

Further, it is hard to match datasets if they are high dimensional.
Introduce a summary statistic function S(·) believed to carry most
information in the original data.

This results in the ABC posterior:

pε(θ, x |y) ∝ 1(ρ(S(y),S(x)) ≤ ε)p(x |θ)p(θ),

In essence, we replace likelihood evaluation with model simulation and
ask “is it close enough to the observed data?".
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Approximate Bayesian Computation Approximation

ABC Approximation

How approximate is ABC?

If S(·) is a sufficient statistic and ε→ 0 then ABC is ‘exact’.

However:
1 Generally not feasible to simulate perfect ‘matches’, i.e. require
ε > 0.

2 Most models do not have a low dimensional sufficient statistic,
must resort to summary statistic (information loss).

These are the two sources of error in ABC.
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Approximate Bayesian Computation Selecting Summary Statistics

Selecting Summary Statistics

These two sources of approximation are conflicting.

Ideally, we would like S(·) to be high dimensional, reducing information
loss. But harder to find close matches in high dimension.

If S(·) is low dimensional, then we reduce the effect of ε, but might lose
too much information.

General principle: Choose a summary statistic as low dimensional as
possible, yet retaining as much information as possible (not easy in
practice).
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Approximate Bayesian Computation Computation

ABC Sampling

How do we generate samples from the ABC posterior?

Simplest method is ABC rejection2.

1 Draw θi ∼ p(·) and simulate xi ∼ p(·|θi) for i = 1, . . . ,M.
2 Compute discrepancy ρi = ρ(S(y),S(xi)). Produces collection
{θi , ρi}Mi=1

3 Keep N = α×M of θi with smallest ρi (this defines the ε)

Choice of α trade off between accuracy and Monte Carlo error.

2Beaumont et al (2002). Genetics 162:2025-2035.
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Approximate Bayesian Computation Computation

ABC Sampling

ABC rejection can be inefficient if (ABC) posterior different to the prior.

Can embed ABC into more efficient algorithms such as MCMC1 and
sequential Monte Carlo (SMC)2.

SMC samples a sequence of distributions with decreasing ABC
tolerance ε1 > ε2 > · · · > εT . The proposal distribution for θ improves
at each iteration.

1Marjoram et al (2003). PNAS 100:15324-15328.
2Sisson et al (2007). PNAS 104:1760-1765.
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Approximate Bayesian Computation Simple Example

ABC coin tossing

Let’s return to the coin tossing example to illustrate the concepts.

Clearly ABC is not really needed here, as the likelihood is completely
tractable.

Here we run ABC rejection with:
M = 1 million
α = 50%, 10%, 1%, 0.1%.
S(y) = y and S(y) = sum(y) (both are sufficient).
ρ is sum of absolute differences.
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Approximate Bayesian Computation Simple Example

ABC coin tossing results

(left) full data as summary statistic, (right) number of heads as summary
statistic
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Approximate Bayesian Computation Motivating Example

Back to motiving example

Here we work with simulated data and treat is as “observed":
Transition rates: Kry = 0.04,Kyg = 0.08,Kgr = 0.17 (assumed
known)
Motility rates: Pr = 2,Py = 5,Pg = 8 (to be estimated)

Summary statistics: Average distance (over 20 tracked cells) travelled
in red, yellow, and green phases of cell cycle; Sr ,Sy ,Sg respectively.

Distance function: Euclidean Distance

SMC ABC (ABC rejection too inefficient)
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Approximate Bayesian Computation Motivating Example

Motivating Example results
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Approximate Bayesian Computation Motivating Example

Break for questions
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Approximate Bayesian Computation Drawbacks

ABC Drawbacks

Highly sensitive to choice of tuning parameters ε, ρ(·).

No standard way to select ε or ρ(·).

Suffers from curse of dimensionality with respect to size of summary
statistic.
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Bayesian Synthetic Likelihood Introduction

Bayesian Synthetic Likelihood

An alternative approach that overcomes some limitations of ABC is
Bayesian synthetic likelihood (BSL)12.

BSL makes the assumption that the distribution of
p(S(x)|θ) = N (µ(θ),Σ(θ)) is multivariate normal.

We can estimate µ(θ) and Σ(θ) via simulation.

1Wood (2010). Nature. 466:1102.
2Price et al (2018). Journal of Computational and Graphical Statistics. 27:1-11
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Bayesian Synthetic Likelihood Introduction

Estimating the Synthetic Likelihood

Basic method
Simulate n iid datasets from the model based on θ
Calculate the n sets of summary statistics
Calculate the sample mean, µn, and sample covariance matrix,
Σn, of the set of simulated summary statistics
The BSL replacement likelihood is

N (S(y);µn(θ),Σn(θ)).
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Bayesian Synthetic Likelihood Introduction

Pros and Cons

Advantages of BSL:

No choice of ε and ρ(·) needed.
Only tuning parameter is n (we find weak dependence on this
choice). Choose n to maximise computational efficiency.
Due to normality assumption, it scales better to high dimensional
summary statistic.

Disadvantages of BSL:

Strong normality assumption may not be reasonable.
Still suffers from the curse of dimensionality with respect to
summary statistic dimension.
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Bayesian Synthetic Likelihood Motivating Example

Back to Motivating Example

Running MCMC BSL with n = 12.
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Bayesian Synthetic Likelihood Extensions

BSL Extensions

Semiparametric estimators to relax normality assumption.

Covariance shrinkage estimation to reduce number of model
simulations.

Decorrelation transformations to make covariance shrinkage
estimation even more effective.

Robustness to model misspecification.

Theoretical properties of BSL.

We have an evolving R package for BSL:
https://cran.r-project.org/web/packages/BSL/index.html
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Discussions Challenges

Challenges

Scaling to high dimensional summary statistic and parameter

Handling expensive model simulators

Model selection

Model misspecification
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