In situ electron microscopy toward new materials and applications
This project aims to develop materials for structural and green energy applications, using spatially-resolved, dynamic in situ transmission electron microscopy to research fundamental mechanical, electrical, thermal, optical, optoelectronic and photovoltaic properties of diverse nanostructures. These techniques measure nanomaterial (one-dimensional nanotubes and nanowires and two-dimensional graphene-like nanosheets) response to external stimuli, including mechanical, electrical, optical and thermal stimuli. Anticipated outcomes are new ultralight and superstrong structural composites and ‘green-energy’ nanomaterials, such as solar cells, touch panels, batteries, supercapacitors, field-effect transistors, light sensors and displays.
Project Number – FL160100089
Non-equilibrium material phases
This project aims to synthesise and characterise exotic materials produced in the laboratory under conditions that replicate those inside planets and stars. Highly non-equilibrium processing methods are needed to find entirely new material forms of elements and compounds created under extreme pressure and temperature. The project will use its laser-based synthesis method to explore and understand the non-equilibrium pathways and develop new materials. Understanding how these materials form could lead to the next materials revolution. This research will lead to materials that industry sectors can exploit for commercial benefits.
Project Number – DP170100131
